Nondeducibility-Based Analysis of Cyber-Physical Systems

Abstract

Controlling information flow in a cyber-physical system (CPS) is challenging because cyber domain decisions and actions manifest themselves as visible changes in the physical domain. This paper presents a nondeducibility-based observability analysis for CPSs. In many CPSs, the capacity of a low-level (LL) observer to deduce high-level (HL) actions ranges from limited to none. However, a collaborative set of observers strategically located in a network may be able to deduce all the HL actions. This paper models a distributed power electronics control device network using a simple DC circuit in order to understand the effect of multiple observers in a CPS. The analysis reveals that the number of observers required to deduce all the HL actions in a system increases linearly with the number of configurable units. A simple definition of nondeducibility based on the uniqueness of low-level projections is also presented. This definition is used to show that a system with two security domain levels could be considered ``nondeducibility secure’’ if no unique LL projections exist.

Publication
Critical Infrastructure Protection III

Related