
Massively Parallel Visualization: Parallel Rendering�

Charles D. Hanseny Michael Kroghy William Whitez

Abstract

This paper presents rendering algorithms, developed for massively parallel proces-

sors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses

a data parallel approach whereas the sphere and volume renderer use a MIMD ap-

proach. Implementations for these algorithms are presented for the Thinking Machines

Corporation CM-5 MPP.

1 Introduction

In recent years, massively parallel processors (MPPs) have proven to be a valuable tool

for performing scienti�c computation. Available memory on this type of computer is far

greater than that which is found on traditional vector supercomputers. For example, a 1024

node CM-5 contains 32 gigabytes of physical memory. As a result, scientists who utilize

these MPPs can execute their three dimensional simulation models with much greater detail

than previously possible. Molecular dynamics simulations can consist of over 100 million

atoms [8] and CFD simulations can contain over 23 million cells with numerous variables

[9]. While these applications allow for better simulation of the underlying physics, they

typically cause a data explosion. As the resolution of simulation models increases, scienti�c

visualization algorithms which take advantage of the large memory and parallelism of these

architectures are becoming increasingly important.

Renderers, used to transform data into images, can be classi�ed into either geometry-

based or volume-based. Geometry-based renderers are used when scienti�c simulations

contain explicit geometry, such as material interface boundaries, or when implicit geometry

is derived, such as from isosurfaces, particles, spheres, vectors, etc. While geometry

extraction may be used as a lossless compression technique [1, 2], it more typically generates

larger amounts of data than are present in the original dataset [4]. Volume-based approaches

produce an image directly from the scienti�c data without utilizing explicit geometry [1, 6].

The data are rendered directly into an image through color and opacity transfer functions.

For large applications rendering on the MPP tends to be preferable to rendering on a

graphics workstation due to the MPP's abundant resources: memory, disk, and numerous

processors. The challenge becomes developing algorithms that can exploit these resources

while minimizing overhead, typically communication costs.

1.1 Rendering

Molnar et al. provide a useful taxonomy for parallel rendering which classi�es rendering

methods, based on where data are sorted from object space to image space, as sort-�rst,

sort-middle, or sort-last [5]. For our applications sort-last, a compositing methodology, has

�This work support by the DOE HPCRC Grant
yAdvanced Computing Laboratory, Los Alamos National Laboratory, viz@acl.lanl.gov
zDepartment of Computer Science, University of North Dakota, wwhite@acl.lanl.gov

1



2 Hansen et al.

Table 1

Mapping Graphics Pipeline to VP sets

Operation Primitive VP Set Operation Primitive VP Set

transformation vertices polygon scan conversion polygons polygon

transform to screen space vertices polygon rasterization scan lines scan line

shading vertices polygon Z-bu�er pixels pixel

demonstrated superior performance. Its strengths are better overall load balancing and

logarithmic image compositing times. Disadvantages are that each processor must have

enough memory for the image bu�er and that compositing involves communicating the

image bu�er among processors. The rest of the paper presents three sort-last renderers

that we have developed: a SIMD polygonal renderer, a MIMD sphere renderer, and a

MIMD volume renderer.

The polygon renderer handles complex polygons and is tuned for smaller polygons

which are typical in large scienti�c data sets. It uses a pixel sorting approach to sort-last.

Advantages of this technique include better network utilization, excellent polygon rates for

large polygonal data sets, integration into existing visualization environments, and load

balancing.

The sphere renderer treats spheres as primitives instead of tesselating the spheres into

polygons. It uses a logarithmic image compositing approach to sort-last. Advantages of

this technique include out-of-core support for arbitrarily large images and data sets, load

balancing, and an optimal compositing algorithm.

The volume renderer e�ciently renders very large 3D scalar �elds. It subdivides the

data among the processors and uses a unique compositing techniques which maximizes

processor e�ciency.

2 Polygon Renderer

For the CM-5, one must chose between the data parallel programming model and the MIMD

message passing programming model. For polygon rendering, we have experimented with

both programming models [3] and in this section, we describe our experiences with a sort-

last polygon renderer written in the data parallel style.

The basic idea behind the data parallel renderer is to maximize the number of operations

occurring in parallel while minimizing communication. While this trait is desirable in both

data parallel and task parallel programming models, the SIMD/SPMD nature of data

parallel programs imposes additional constraints. In data parallel programs, there is only

one thread of control. For e�cient programs, it is necessary to maximize the set of active

processors at any given step in an algorithm. This is accomplished by judicious assignment

of data to the processors, sometimes referred to as layout.

2.1 Data Layout

To determine the optimal layout for the rendering process, we examined the standard

graphics pipeline with respect to data operations. Table 1 breaks down the standard

graphics rendering pipeline into basic steps. Each of these operations is categorized by

the primitive upon which the operation is performed. Lastly, the virtual processor (VP)

set is indicated.

The �rst three steps operate upon vertices. Each vertex is transformed and then shaded.



MPV: Parallel Rendering 3

In this implementation, we are optimizing for speed. Therefore, we perform simple Gouraud

shading. In Gouraud shading, the shading is computed at each vertex and then linearly

interpolated across an edge when forming a scan line segment and linearly interpolated

across the scan line segment during rasterization, resulting in a smoothly shaded object.

More advanced shading techniques are easy to implement.

The fourth step scan converts the polygons by determining which polygon edges

intersect a particular scan line and interpolating the X, Z and shaded color information

along the polygon edge to determine the value for a particular Y scan-line.

Hidden surface elimination is accomplished by employing a parallel Z-bu�er algorithm.

This is done by rasterizing the line segments produced from the scan conversion process,

clipping the resulting pixels against the viewport and then Z-bu�ering the non-clipped

pixels. The Z-bu�er tiles the image plane such that independent/non-overlapping regions

of the screen are assigned to individual virtual processors.

If we strictly followed this, we would remap the virtual processors from vertices to

polygons to line segments to pixels. The remapping of virtual processors involves general

communication which is costly. If we map each polygon to a virtual processor and then

iterate over the vertices within each polygon, we can eliminate one of the communications.

The most interesting parts of the algorithm are the scan conversion and Z-bu�ering.

The scan conversion process iterates over the maximum number of scan lines through any

polygon. Since scan conversion is concurrently executed for all polygons in parallel, it

is bounded by the maximum number of scan lines within any polygon. Thus number

of iterations necessary to process the entire set of polygons is the maximum number of

scan lines spanning any polygon. As the number of scan lines processed approaches the

maximum, fewer polygons are processed, since some polygons, those with a smaller number

of scan lines passing through them, will have completed the scan conversion process. We

address this load balancing issue in the next subsection.

In the Z-bu�ering step, line segments from the previous steps are converted to pixels.

The individual pixels are routed to the VP which is responsible for that particular

screen region. This is accomplished through the sendmax operator. Where pixels from

di�erent polygons are mapped to the same image location, the hidden-surface elimination

is performed by choosing the pixel with the maximal Z value.

2.2 Load Balancing

In the renderer, there are two key loops, one for scan converting polygons into line segments

and one for Z-bu�ering the line segments. As previously noted, when virtual processors

(VP) complete the scan conversion of their polygons, they become idle. VPs can also

become idle if the polygon is clipped or backface culled. Idle VPs lead to a load balancing

problem.

We address this problem by dynamically redistributing remaining portions of polygons

to be scan converted to idle VPs. This reuses existing memory space and attempts to

keep all VPs active during the scan conversion process. Redistribution of the work load

is determined by keeping track of the time taken to process a scan line, and the time

to redistribute work. If the saving in loop iteration is less than the time to perform the

redistribution, it makes no sense to perform the redistribution.

Table 2 gives the rendering times for di�erent partition sizes on the CM-5.



4 Hansen et al.

Table 2

Rendering of Polygons on CM-5

CM-5 Partition Size 32 64 128 256 512

Time (sec) 1.656 0.867 0.559 0.327 0.205

Polygons/sec 137,855 263,308 408,386 677,412 1,113,600

3 Sphere Renderer

As with the polygon renderer we have also experimented with both sort-middle and sort-

last approaches to sphere rendering. Sort-last has proven to have superior performance for

our application. Since the amount of work to process a sphere varies with its radius, we

chose the MIMD model so processors can run asynchronously and maximize utilization.

3.1 Data Layout

The sphere renderer supports an unlimited number of spheres and any image size. If

necessary, based on memory constraints, spheres may be handled in steps. Likewise, an

image may be processed in steps. With sort-last each processor has its own image and Z-

bu�ers for the current part of image that is being worked. The current set of spheres, which

are distributed equally among processors, are rendered into local image and Z bu�ers.

All processors then assign their spheres a color (based on a scalar value such as kinetic

energy), transform them to image space, and scale their radii for perspective. Spheres closer

to the camera will appear larger than spheres of the same radius which are further from

the camera.

Spheres are then scan converted, one at a time, into the image and Z bu�ers. The scan

conversion is done by evaluating a distance equation for each pixel within the bounding box

for the sphere. If the current pixel is within the sphere, then a Z-bu�er comparison is made

and if the pixel is not hidden, the color is determined. Lighting is approximated by including

an o�set, based on sphere center and current pixel location, in the color calculation. This

gives the illusion of a light at �xed location from the camera.

After each processor has �nished rendering, the N Z-bu�ers are composited, in

logarithmic time using the CMMD function CMMD reduce v, with a minimum operator

to select pixels, across all processors, closest to the camera. Processors then zero out pixel

colors in their image bu�ers wherever their local Z-bu�ers don't match the composite Z-

bu�er. Image bu�ers are then composited using a maximum operator.

3.2 Load Balancing

Although all processors initially receive an equal amount of work, if an image is being

processed in steps or if spheres are transformed out of the image, then some processors

may have signi�cant load balancing problems. This is resolved by migrating some atoms,

after the object-to-image space transformation, from heavily loaded processors to lightly

loaded processors. A simple approach of sorting processor loads and matching up the

lightest load with the heaviest load, and so on, seems to yield acceptable results. Other

approaches are being investigated.

3.3 Results

To gauge our algorithm's performance we benchmarked it on several di�erent CM-5

partitions and a SGI Onyx with Reality Engine II graphics engine. The SGI workstation



MPV: Parallel Rendering 5

Table 3

Sphere Rendering Times

CM-5 Partition Size 32 64 128 256 512

Time (sec) 284 160 91 53 36

SGI Tesselation Factor 1 5 9

Time (sec) 777 3066 8215

uses a simple, but optimized, program that invokes the SGI sphere drawing routine. Their

sphere drawing routine tesselates a sphere into a set of triangle or quadrangle meshes

(depending on user selected tesselation method). The number of polygons generated

depends upon the user selected tesselation factor. High factors yield rounder spheres.

Table 3 shows time (in seconds) to render a data set containing 37,993,550 atoms on

various CM-5 partition sizes and on a SGI Onyx with various tesselation factors.

4 Volume Renderer

Direct volume rendering di�ers from geometry rendering in that the data are rendered by

compositing color/opacity pairs, derived from the data values, into an image. This can be

done either by projecting the volume samples onto the image plane through a technique

such as splatting [6], or by ray-casting which involves sampling data values along rays

projected from the camera through the image plane and into the data set [1, 6].

Although no geometry is processed, ray-casting techniques can be classi�ed by the same

rendering taxonomy. We have developed a sort-last volume rendering algorithm which

maximizes processor utilization during the compositing phase by taking advantage of data

locality [7].

4.1 Data Layout

Since ray-cast volume renderers are inherently parallel, parallelization of the ray-casting is

trivial when the data volume is replicated at every node. However, for large 3D scalar �elds,

it is not feasible to replicate the data and clever techniques for data space decomposition

and �nal compositing are required.

We have developed a data space partitioning scheme based upon K-D trees. Each level

in the K-D tree is formed by alternating binary subdivision of the coordinate planes. This

leads to a block decomposition of the data volume where each node of the MPP contains

a subvolume of the original data set. Each subvolume is rendered, independently and

concurrently, by ray-casting from the identical view direction; and, only rays within the

image region covering the corresponding subvolume are cast and sampled. This results in

a partial image in each processor node for its subvolume.

We have developed a unique method for compositing these �nal images, called

Binary-Swap Compositing, which maximizes processor utilization. The basic idea of the

compositing algorithm is that a processor swaps 1=2 of its image with 1=2 of its neighbor's

image. Each processor then composites its own half with that received from the neighbor.

Next, the processor swaps 1=2 of that sub-image (resulting in 1=4 of the total image) with

another neighbor and the quarters are composited. At the �nal stage, each processor will

have a portion of the �nal image. By controlling which neighbors swap which part of the

image, the �nal image layout among the processor nodes can be optimized.

In the early phases of the binary-swap algorithm, each processor is responsible for a



6 Hansen et al.

Table 4

Volume Rendering 2563 Volume on CM-5

CM-5 Partition Size 32 64 128 256 512

Time (sec) Render 48.2005 24.4303 12.697 6.3434 3.1878

Time (sec) Composite 0.71520 0.58100 0.4272 0.3874 0.3310

large portion of the image area, but the data coverage in the image area is usually sparse

because only a few processors have contributed to it. In later phases of the algorithm, as

we move up the compositing tree, the processors are responsible for a smaller and smaller

portion of the image area, but the density of data coverage increases because an increasing

number of processors have contributed image data. In the early phases, a larger amount of

data is communicated when communication is with nearest neighbors. In the later phases, a

smaller amount of data is communicated which is when communication is among non-local

processors. This e�ectively utilizes the bandwidth constraints of MPPs.

Table 4 shows the rendering and compositing times for a 2563 3D scalar �eld of vorticity

data volume rendered on the CM-5.

5 Conclusion

We have shown that rendering can be performed at very high rates on a MPP and is better

suited, compared to graphics workstations, for handling the quantities of data produced by

simulations that run on these machines.

Also, for our magnitude of data we have found that a sort-last approach performs better

than a sort-middle approach and has the advantage of not relying on a hardware speci�c

rendering engine.

References

[1] M. Levoy, E�cient Ray Tracing of Volume Data, ACM Transactions of Computer Graphics,

9(3), (1990).

[2] W. Lorensen and H. Cline, A High Resolution 3D Surface Construction Algorithm, Computer

Graphics (SIGGRAPH Proceedings), 21 (1987), pp. 163-169.

[3] F. Ortega, C. Hansen, and J. Ahrens, Fast Data Parallel Polygon Rendering, Proceedings of

Supercomputing '93, November 1993

[4] C. Hansen and P. Hinker,Massively Parallel Isosurface Extraction, Proceedings of Visualization

'92, (1992), pp. 77-83.

[5] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, A Sorting Classi�cation of Parallel Rendering,

IEEE Computer Graphics and Applications, 14(4), July 1994, pp. 23-32.

[6] T. Elvins, A Survey of Algorithms for Volume Visualization, ACM Computer Graphics

Quarterly, 26(3) (1992).

[7] K.L. Ma, J. Painter, C. Hansen, and M. Krogh, Parallel Volume Rendering Using Binary-Swap

Image Composition, IEEE Computer Graphics and Applications, 14(4), July 1994, pp. 59-68.

[8] P.S. Lomdahl, P. Tamayo, N. Gronbech-Jensen, and D.M. Beazley, 50 GFlops Molecular

Dynamics on the Connection Machine 5, Proceedings of Supercomputing 93, November 1993,

pp. 520-527.

[9] J.K. Dukowicz, R.D. Smith, and R.C. Malone, A Reformulation and Implementation of the

Bryan-Cox-Semtner Ocean Model on the Connection Machine, Journal of Atmospheric and

Oceanic Technology, 10(2) April 1993, pp. 195-208.


	Abstract
	1 Introduction
	1.1 Rendering

	2 Polygon Renderer
	2.1 Data Layout
	2.2 Load Balancing

	3 Sphere Renderer
	3.1 Data Layout
	3.2 Load Balancing
	3.3 Results

	4 Volume Renderer
	4.1 Data Layout

	5 Conclusion
	References

