CS 456: Advanced Algorithms

Instructor: Thoshitha Gamage, Ph.D.
Southern Illinois University at Edwardsville

Fall 2020 Syllabus

Course Information:
- **Title:** CS 456: Advanced Algorithms (3 Credits)
- **Location:** thru Microsoft Teams
- **Time:** M & W 12:00 – 01:15 p.m.
- **Course Website:** http://www.cs.siue.edu/~tgamage/courses/456F20
- **Assignment Dropbox:** https://classes.cs.siue.edu/fall-2020/

Contact Information:
- **Office:** EB 3053 (unmanned)
- **Phone:** 650-2407 (unmanned)
- **Email:** tgamage@siue.edu
- **Web Site:** http://www.cs.siue.edu/~tgamage
- **Office Hours:** email me to pre-arrange an online Meeting

This is an upper-level undergraduate course in design and analysis of algorithms. The primary course objectives are:

1. to study algorithmic design strategies, empirical validation of theoretical results, and to learn algorithmic problem solving skills;
2. to build on CS 340 knowledge of complexity and correctness analysis techniques;
3. to mathematically reason about algorithms and their designs;
4. to facilitate a learning environment that strengthens participants’ theoretical and empirical knowledge, and understanding through hand-on experiments; and
5. to improve participants’ critical thinking, reading, and writing skills;

By the end of the semester, students are expected to be proficient in algorithmic design strategies, complexity analysis, and correctness proofs of general computer programs. The content of this course is influenced by and was developed in accordance to the IEEE/ACM Computer Science Curriculum Guidelines (2013) https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf.

1 Course Prerequisites

CS 340 (Data Structure and Algorithms) or the instructor’s permission. Also **fluency and significant experience** in at least one programming language, preferably C, C++, Java, or Python, and **Unix/Linux** will be essential. If you do not meet these prerequisites, you **MUST** come and talk with me the first week of class. I reserve the right to drop you from the course if it becomes obvious that you do not meet the course prerequisites.

2 Textbook & Resources

last updated: 08/26/20 @ 3:14pm
My lecture notes are based on numerous textbooks from my personal library and recent literature. The presentation slides you find on the course website are from the publisher of [AL3e]. You may also find another set of useful and complementary slides Professor Kevin Wayne at Princeton graciously let me borrow in my Fall ’14 offering (https://www.cs.siue.edu/~tgamage/archieved/F14/CS456/). Material I present in class typically have a strong mathematical flavor to them. Students are required to regularly check the course website and the SIUE email account for any important course related updates.

3 Assigned Work and Tentative Grading Policy

The following grade allocation breakdown is tentative, and may change during the semester. Unless the circumstances change, I am NOT planning on curving or rounding the final grade. Programming Assignments will be available through the course website (not Blackboard).

<table>
<thead>
<tr>
<th>Grading Allocation</th>
<th>BS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>40%</td>
<td>35%</td>
</tr>
<tr>
<td>Midterm</td>
<td>15% / 13%</td>
<td>35% / 33%</td>
</tr>
<tr>
<td>Final (comprehensive!!)</td>
<td>25% / 22%</td>
<td>35% / 32%</td>
</tr>
<tr>
<td>Attendance & Daily Pop Quizzes</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td>Programing Projects</td>
<td>30%</td>
<td>25%</td>
</tr>
<tr>
<td>Graduate Standing Project</td>
<td>–</td>
<td>15%</td>
</tr>
</tbody>
</table>

Final Letter Grade

<table>
<thead>
<tr>
<th>Final Grade</th>
<th>BS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 ++</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>79–88</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>70–79</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>60–70</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>– 60</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

3.1 Exams

- **Midterm (E1)**: Monday October 19th, 10:00 – 11:15 a.m. (75 mins)
- **Final (FE)**: Wednesday December 16th, 10:00–11:40 a.m. (100 mins)

3.2 Attendance & Daily Quizzes

On each lecture day, there will be 1-2 pop quizzes that accounts for 10% of your final grade. In preparation, you are expected to read the relevant sections from CLRS3e (see Tentative Schedule below). These pop quizzes will not be rescheduled nor will be made available ahead of time for planned or unplanned absences.

last updated: 08/26/20 @ 3:14pm
3.3 Problem Solving

There will be roughly ~3-4 in-class problem solving sessions during the course of the semester. In preparation, I will ask you to research and read about specific algorithmic problems, that you may or may not find on the textbooks. I will try my best to direct you to relevant resources where applicable, but I am fully expecting you to take the responsibility of your own learning and attend the session fully prepared.

3.4 Programming Projects

You will be given roughly ~3 hands-on programming assignments with a strong 2 weeks deadline. These assignments place a higher emphasis on empirical validation over “programming practice”. Specifics of these assignments will be posted on the course website. I will give you the option to choose a language of your choice for programming (though C++, Java, or Python is recommended) but the development platform is fixed to Unix/Linux. You must make sure your code compiles and runs on any typical Linux system and to provide a Makefile with your submission.

3.5 Graduate Standing Project

Graduate students are required to conduct a mini-research project that is worth 15% of their final grade. A typical graduate level research of this scope would include a fairly comprehensive literature survey that refers a minimum 15-20 highly cited research papers, culminating to a taxonomy and some empirical validation. In other words, your objective is to develop a hypothesis based on your reading and validate it with experimentation. You are free to choose a topic of your choice relevant to the theme of this course. Topics that intersects with Cybersecurity are highly favorable.

Places to look for a research topic includes (but not limited to) IEEE FOCS, ACM STOC, ISAAC, SODA, IEEE S&P, ACM CCS, SOCG, IEEE CCC, ACM PODC, IEEE IPDPS, CSF, DSN, IEEE ICDCS, USENIX, etc. Have a look at the USENIX security symposium proceedings https://www.usenix.org/conference/usenixsecurityXX/technical-sessions (Replace XX with a 2-digit year (e.g. 19)) for a quick "get me up-to-speed". Here's a sample for your review: https://dl.acm.org/citation.cfm?id=3047307.

Important milestones for your project are listed below. All assignments are due at the beginning of class through Blackboard.

- (G1) Wednesday September 09th, 2020 – A one page research proposal and a justification of your proposed research.
- (G2) Wednesday October 14th, 2020 – ~2-3 page research progress summary.
- (G3) Wednesday December 02nd, 2020 – Project presentation slides.
- (G4) Wednesday December 09th, 2020 – Final report.

You are to present your research to the class at the conclusion of your research during weeks 15 and 16. In addition, you are required to produce an IEEE conference style minimum 8-page paper of your research. A template can be found at http://www.ieee.org/conferences_events/conferences/publishing/templates.html. You are highly encouraged to produce your report using Latex.

I reserve the right to decide which projects meet graduate standing and to lower the grade for any projects that don’t at any point during the semester; hence, make sure to clearly exchange your research ideas with me, find out about my expectations, and set yourself up for success early in the semester.

In addition, graduate students may have additional mandatory questions in exams. Accordingly, graduate students will be graded on separate scale. Please refer Section 3 for the scale.

4 Classroom Policies

4.1 Attendance Policy

You are expected to attend all live lectures and proactively participate in in-class discussions and Q&A. Recordings of all lectures will be available through Microsoft Teams. Additionally, In addition, I will also share all my live scribe
notes. It is important for you to pay attention to the live lecture, take your own notes, and not solely depending on recorded lectures; recorded videos are not meant to be a substitute for missed classes.

4.2 Late Policy

Unless otherwise noted or announced in-class, all deadlines are hard deadlines and assignments are due at the beginning of class on the due date. Assignments may be turned within 48 hours grace period after the deadline (except any final projects) with a 20% late penalty. No assignment is accepted beyond this grace period. Graduate project milestones do not have any grace periods.

4.3 Potential for Changes in Course Schedule or Modality

As the COVID-19 pandemic continues, there remains a possibility that planned classroom activities will need to be adjusted. Depending on circumstances and following state-issued recommendations, potential changes include changes in course modality (e.g., transition from face-to-face to online) or in course scheduled meetings. These changes would be implemented to ensure the successful completion of the course. In these cases, students will be provided with an addendum to the class syllabus that will supersede the original version.

5 COVID-19 Pandemic Policies (Fall 2020)

5.1 Health and Safety

Consistent with the Illinois Board of Higher Education guidance contained in “Safely Launching Academic Year 2020” released on June 23, 2020 and guidelines established by Governor J. B. Pritzker and Restore Illinois, Southern Illinois University Edwardsville has implemented a new policy to help ensure the safety of all students, faculty and employees during the pandemic. The measures outlined below are required and any student who does not comply may be in violation of the COVID-19 People-Focused Health and Safety Policy, as well as the University’s Student Code of Conduct.

5.2 Classrooms, Labs, Studios, and Other Academic Spaces

While in the classroom, lab, studio, or other academic spaces, students shall practice social distancing measures by maintaining a distance of at least six feet from others in the classroom and wearing a face covering. Extra care should be taken upon entering and leaving the classroom spaces. Classroom furniture should not be rearranged, and furniture that has been taped off or covered should not be used.

Students who forget to wear a face mask or face shield will be reminded of their obligation to comply with SIUE’s COVID-19 People-Focused Health and Safety Policy and temporarily asked to leave the class until they are able to conform to the policy. Students who forget or lose their face coverings may be able to obtain replacements from a friend, a faculty member, or a nearby departmental office. Face coverings are also available for purchase in the Cougar Store (MUC).

Students who refuse to wear a face covering will be asked to leave the classroom and referred to the Dean of Students for non-compliance with community health and safety protocols. Repeated non-compliance may result in disciplinary actions, including the student being administratively dropped from an on-ground/faceto-face course or courses without refund if no alternative course format is available.

If a student has a documented health condition which makes wearing a face covering medically intolerable, that student should contact ACCESS to explore options with the understanding that ACCESS will not grant accommodations which excuse the need for a face covering while on campus or in the classroom. ACCESS will work with qualifying individuals to find reasonable alternatives, whenever such solutions are available. Please call or contact the ACCESS Office via email to schedule an online appointment to discuss potential alternatives. ACCESS office (Student Success Center, Room 1203, 618-650-3726, and myaccess@siue.edu).

__last updated: 08/26/20 @ 3:14pm__
5.2.1 General Health Measures

At all times, students should engage in recommended health and safety measures, which include:

- Conducting a daily health assessment. If you have COVID-19 symptoms, but not yet tested positive, have had COVID-19 close contact exposure, or are COVID-19 diagnosed as presumptive or confirmed positive, stay home and contact your health provider or SIUE Health Service at cougarcare@siue.edu or 618-650-2842. More information is available on the SIUE COVID-19 website.
- Frequent washing or disinfecting of hands.
- Social distancing by maintaining a distance of at least six feet from others.
- Face masks or face coverings that cover the nose and mouth are required in indoor public spaces regardless of the ability to maintain social distance. Indoor public spaces include common spaces or community settings that anyone can access, such as reception areas with walk-in access, restrooms, hallways, classrooms, teaching and research laboratories, as well as common spaces in residence halls, conference rooms, lobbies, and break rooms.
- Adhere to directional signs and traffic flow patterns in buildings and offices. Doors for entering and exiting buildings will be designated. Where multiple doors exist, in and out doors will be marked with “Entrance” and “Exit” signs. Plans that consider traffic flow in and out of buildings, and within buildings (i.e. stairs, hallways, etc. where possible) will be marked.

6 Academic Integrity

Students are reminded that the expectations and academic standards outlined in the Student Academic Code (3C2) apply to all courses, field experiences and educational experiences at the University, regardless of modality or location. The full text of the policy can be found here: https://www.siue.edu/policies/3c2.shtml.

6.1 Responsible Learning Policy

There is a no tolerance policy with regards to cheating. Anyone caught cheating will fail the course. Do your own work. Your exams, homeworks, and programming projects are subject to the academic honor code. Following activities will be considered academic dishonesty:

- Submitting work (such as assigned work, projects, and code) done by somebody else (this includes any human/electronic sources (such as web sites));
- Watching and copying your neighbors’ solutions during problem solving and/or exams;
- Collaboratively develop solutions to individual assignments;
- Using materials not allowed during problem solving and exams;
- Using materials not allowed for the programming projects.

You are expected to know and observe the SIUE Student Conduct Code (3C1) and Student Academic Code (3C2) found at http://www.siue.edu/policies. If you are unsure about what constitutes as plagiarism, check this website: https://www.siue.edu/education/psychology/plagiarism.shtml.

6.2 Recordings of Class Content

Faculty recordings of lectures and/or other course materials are meant to facilitate student learning and to help facilitate a student catching up who has missed class due to illness. As such, students are reminded that the recording, as well as replicating or sharing of any course content and/or course materials without the express permission of the instructor of record, is not permitted, and may be considered a violation of the University’s Student Conduct Code (3C1), linked here: https://www.siue.edu/policies/3c1.shtml.

6.3 Online Repositories

If you intend to keep any project source code in online repositories, ensure those repositories are private and only accessible to you. By making source code publicly available to others, you might be involuntarily participating in plagiarism.

last updated: 08/26/20 @ 3:14pm
6.3.1 Advice

This course will require a substantial amount of time reading and solving problems outside of class time. It is imperative that you keep up with the assigned reading and other tasks as much as possible. If you do not, it will be very difficult to be successful in this course.

Know the information, how to approach the problem/solution, and present it in a clear and organized manner. On exams and in programming projects, you are attempting to demonstrate understanding of concepts and the ability to solve problems. If I have to try to determine how you came up with your answer, then you will not receive full credit.

The following conditions are subject to loss of some or all credit for a given problem:

- Illegible work/answers
- Work/answers that cannot be easily located
- No work
- Missing/incorrect units
- Compile-time and/or run-time errors

Solutions which clearly demonstrate understanding of the material, but have a minor error may receive partial credit. The final score for such problems is at the discretion of the grader and/or the instructor.

a. Don’t wait until the last minute to do homework or projects. Labs get busy, computers break down, and people get sick. These are not sufficient excuses for an extension.
b. Save early; save often!
c. Contact me if you are confused. Don’t wait for office hours; send an email.
d. I strongly discourage you from getting into discussions with me about grades and how you can get a better one. This includes emailing me about possible ways to “bump” your grade. Such requests only mean one thing; that you have already fallen behind on your own expectations.

7 Accessible Campus Community & Equitable Student Support

Students needing accommodations because of medical diagnosis or major life impairment will need to register with Accessible Campus Community & Equitable Student Support (ACCESS) and complete an intake process before accommodations will be given. Students who believe they have a diagnosis but do not have documentation should contact ACCESS for assistance and/or appropriate referral. The ACCESS office is located in the Student Success Center, Room 1270. You can also reach the office by e-mail at myaccess@siue.edu or by calling 618.650.3726. For more information on policies, procedures, or necessary forms, please visit the ACCESS website at www.siue.edu/access.
7.1 **CS456 in a Nutshell**

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>PR01</td>
<td>PR02</td>
<td>PR03</td>
<td>G1</td>
<td>G2</td>
<td>E1</td>
<td>G3</td>
<td>G4</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S# – Problem Solving Session, G# – Graduate Standing Project Milestones, PRo# – Programming Assignments/Projects, E1 – Mid-Term Exam, FE – Final Exam

8 **Tentative Schedule**

Subject to adjustment and change. I reserve the right to change topics or add an item of related interest. All changes will be announced in class.

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics</th>
<th>References</th>
<th>Assignments/Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aug. 24, 26</td>
<td>Introduction and Course Overview</td>
<td>CLRS3e/01</td>
<td>So (take-home)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematics of Algorithmic Analysis:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Aug. 31, Sep. 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Sep. 07, 09</td>
<td>Labor Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Sep. 14, 16</td>
<td>Greedy Strategy:</td>
<td>CLRS3e/16</td>
<td>S1 (in-class)</td>
</tr>
<tr>
<td>05</td>
<td>Sep. 21, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Sep. 28, 30</td>
<td>Divide-and-Conquer Strategy:</td>
<td>CLRS3e/04</td>
<td>S2 (in-class)</td>
</tr>
<tr>
<td>07</td>
<td>Oct. 05, 07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Oct. 12, 14</td>
<td></td>
<td>G1 « in, PR01 » out</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Oct. 19, 21</td>
<td>Dynamic Programming:</td>
<td>CLRS3e/15</td>
<td>S3 (in-class)</td>
</tr>
<tr>
<td>10</td>
<td>Oct. 26, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nov. 02, 04</td>
<td>Network Flow:</td>
<td>CLRS3e/26</td>
<td>S4 (in-class)</td>
</tr>
<tr>
<td>12</td>
<td>Nov. 09, 11</td>
<td>Randomized & Approximation Algorithms:</td>
<td>CLRS3e/05,35</td>
<td>PR03 » out</td>
</tr>
<tr>
<td>13</td>
<td>Nov. 16, 18</td>
<td>Algorithmic Intractability:</td>
<td>CLRS3e/34</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nov. 23, 25</td>
<td>Thanksgiving Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nov. 30, Dec. 02</td>
<td></td>
<td>Topic TBA</td>
<td>PR03 » in</td>
</tr>
<tr>
<td>16</td>
<td>Nov. 07, Dec. 09</td>
<td></td>
<td>Topic TBA</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Dec. 17</td>
<td>Final Exam: 10.00 – 11.40 a.m.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Thanksgiving Break, †Midterm Exam, §Graduate Project: In class presentations