Free Shell Live

Project Plan

 v1.1
Team Extreme
Jonathan Birch

Bryan Kimbro

Mark Sparks

Greg Chabala


31. Introduction


31.1  Overview


31.2  Definitions, Acronyms, and Abbreviations


41.3  References


41.4  Overview of the Remainder of the Document


52. Stakeholders


53. Project Organization


64. Development Process


64.1  Process Model


74.2  Software Documentation and Reviews


74.3  Development Methodologies, Policies, Standards, and Tools


74.4  Configuration Management


74.5  Test Plan


84.6  Prototypes


95. Hardware and Software Requirements


96. Deliverables and Deadlines


107. Efforts and Schedule


128. Measurements


129. Risk Management


12Limitations of HTML and JavaScript


12Team Conflicts


12Inability to Port Code Base


12Error Prone Code Base


13Contradiction Checking


13Backtracking Difficulty


13Completeness Checking


13Team Member Lost


13Acceptance Issues


13Late Finish


1510. Ethical Considerations


16Index




1. Introduction

1.1  Overview

SIUE periodically offers a class in expert systems. In order to soften the learning curve presented in this class, a shell program is used by students to develop and execute expert systems. Originally, the program used for this purpose was Exsys CORVID XE "CORVID" . This program required a licensing fee, so in 2003 a senior project team was assigned to develop a replacement. The result was Free Shell.
Although it is functional, Free Shell lacks certain features that are present in CORVID XE "CORVID" . CORVID is capable of producing a web interface for an expert system XE "expert system" , but Free Shell is not. Also, Free Shell currently has no capability for editing rules that have already been placed in an expert system. Finally, a number of students have complained about certain aspects of the Free Shell interface.
Dr. Yu has asked us to produce an updated version of Free Shell. This new version will incorporate the functionality present in the current application. Expert systems students will be able to use a graphical user interface (GUI) to design rule sets. Novice users will then be able to run the expert systems generated this way through a different GUI and observe the results.
Updates in this new version will include the ability for novice users to interact with an expert system XE "expert system"  through a web-based GUI. This GUI will be enhanced with the option for users to query the system for the rules that led to a question being asked. Additionally, the rule design system will be altered to incorporate a capability for editing of rules already in place. Options to check for logical contradictions in rules and completeness will also be added. This system will increase the usability, stability, and usefulness of the current Free Shell program.

1.2  Definitions XE "Definitions" , Acronyms XE "Acronyms" , and Abbreviations XE "Abbreviations" 
backward chaining:
inference method that starts with the goal, working backwards until either the goal has been verified or all sub-goals have been investigated; also called goal-driven

certainty factor:
numerical weight given to a fact or relationship to indicate the confidence the user has in the fact or relationship; values range from -1 (strong disbelief) to +1 (strong belief). A value of 0 indicates uncertainty

certainty factor algebra:
refers to the formulas involved in combining certainty factors from multiple rules

expert system XE "expert system" : 
computer program that uses a knowledge base of human expertise to solve problems or give advice; has two parts, a knowledge base and an inference engine

expert system XE "expert system"  shell:


stand alone inference engine that can be used



   


with different knowledge bases

Exsys CORVID XE "CORVID" :


expert system XE "expert system"  shell currently used by Dr. Yu in






his expert systems class

forward chaining:
inference method that starts with the facts and works forward until a conclusion is reached; also called data-driven

GUI:




graphical user interface

inference engine:
computer program that derives new facts and   answers questions by applying inference methods on the knowledge base


   

knowledge base:
stores problem solving knowledge for a particular  
   domain, usually in the form of production rules

production rules:
rules that are interpreted to determine what the output should be given a set of inputs

uncertainty:
refers to a value that cannot be determined by questioning (i.e., the user doesn’t know the answer); expert system XE "expert system"  must be able to handle this


1.3  References XE "References"  


Information presented here may also reference information in the Problem Statement and Requirements Specification of this project.

1.4  Overview of the Remainder of the Document


Our purpose in the following pages is to define our plan that will lead to the system we shall create. In doing so, specific details are presented on what tasks will be performed in the development process, along with a framework for that development to be follow, including schedules, testing, and deliverables.
2. Stakeholders XE "Stakeholders" 

Dr. Yu is a significant stakeholder in this project. He uses it to facilitate hands-on experience in his expert systems class. The members of Team Extreme are another stakeholder, as the success of this project is a key factor in our progress in the Senior Project course, which directly affects our ability to graduate. Expert system students are yet another stakeholder, for this program is helpful to their education in the subject, and difficulties in the previous version hampered this benefit.

3. Project Organization XE "Project Organization" 

The team organization is defined by the following chart.  Our client and upper management are also included.


[image: image1.wmf]Dr

. 

Bernhard Waxman

Upper Management

Mark Sparks

Lead Designer

Greg Chabala

Lead Programmer

Bryan Kimbro

Lead Tester

Jonathan Birch

Project Manager

Dr

. 

Xudong Yu

Client

Team Extreme




Figure 1.

4. Development Process

4.1  Process Model XE "Process Model" 
We intend to use a modified evolutionary delivery lifecycle model XE "lifecycle model"  for this project. 


[image: image2.emf]Software Concept

Preliminary 

Requirements Analysis

Design of Architecture 

and System Core

Develop a Version Develop a Version

Incorporate Customer 

Feedback

Deliver a Version

Incorporate Customer 

Feedback

Elicit Customer 

Feedback

Deliver a Version

Elicit Customer 

Feedback

Integration Testing

Deliver Final Version

We chose this model because it reflects a compromise between the uncertainty of our system’s construction and the need to have a finished product by December 2005. 

One of the most significant requirements of Free Shell Live is that it must incorporate a feature for publishing an expert system XE "expert system"  for use over the World Wide Web. Because we are currently not certain how we will implement this aspect of the system, it seems appropriate to apply an evolutionary approach. This will allow us try out different prototypes of the system until we developed one satisfactory to our client. Since are system is composed of two very distinct subsystems, we have decided to divide development between two distinct evolutionary cycles.
Our system also has a hard deadline of December 2005. If we were to use an evolutionary prototype model we might not have a completed system by that time. For these reasons we intend to use an evolutionary delivery lifecycle model. We will create a deliverable version of the system relatively quickly, and then develop it similarly to the way we would in an evolutionary prototype model. This will allow us to ensure that we have a deliverable product by our deadline while still allowing us to make corrections to our design during the course of development.

4.2  Software Documentation and Reviews


The following documents will be produced, as referenced in the CS 425 Syllabus:

1. Problem Statement [Software Project Outline (SPO)]

2. Requirements Analysis Document (RAD)  [Requirements Specification]

3. Software Project Management Plan (SPMP) [Software Development Plan (SDP)]

4. Project Agreement [Customer Contract]

5. System Design Document (SDD) and Object Design Document (ODD) [Design Specification]
6. Coding Standards and Conventions

4.3  Development Methodologies XE "Methodologies" , Policies XE "Policies" , Standards XE "Standards" , and Tools XE "Tools"  


The design of the new web interface will be a new field of study for us, but in general it will be kept as neat and elegant as possible. The rest of the project is primarily bug fixing in the old project, so our methodology will be the same as the existing one, except for where we recode areas for clarity, or performance, or simplicity.


The policy on workmanship is at this point voluntary. The individual who volunteers completes the task, and when it comes time to put the pieces together, the group assembles to discuss the details.


The standards of this project are to model the CS department coding standards. Applicable comments in the code are also encouraged.


We will be using the previous FreeShell system as a reference as we update its code. Other tools include Visual Studio, either .NET or version 6 is still to be determined. 

4.4  Configuration Management XE "Configuration Management" 

A form of version control software will be needed. However the decision between CVS and SourceSafe has not been made.
4.5  Test Plan XE "Test Plan" 
Testing will consist of four parts:  Module testing, Integration testing, System testing, and Acceptance testing.

Module Testing

The behavior of each module in our system will be tested once it has been completed.  This will be repeated until each module in our system acts as intended.  Outputs will be examined after a set of test input has been entered.  Each module will be tested both with expected and boundary inputs to ensure that it behaves properly up to established limits.  This will allow us to guarantee that each module works properly within the limits that we have set.

 XE "Module Testing" 
Integration Testing XE "Integration Testing" 
After the completion of module testing, each component will be tested for compatibility with established system sections.  Stubs and drivers will be used to imitate any sections that have not yet been completed.

System Testing
Following the completion of each delivery cycle each system will be tested to ensure that it performs as intended. Usability testing will also be performed at the end of each delivery cycle to ascertain the system’s ease of use and determine possible changes for its improvement. XE "System Testing" 
The complete integrated system will also be tested to ensure the in-place functionality of the expert system publish feature. Sample expert systems will be created in the knowledge base editor and then published. Interaction tests will then be performed with the published expert systems to determine that all functions are operating correctly. Sample expert systems will be designed in advance to test expected and boundary functionality of the system.

An example of how testing will occur is completeness checking.  While using FreeShell Live, there must be a possible way for the system to reach every possible outcome that has been programmed into the system.  To check that completeness checking works properly, expert systems will be created that are both complete and incomplete.  The completeness checking feature will be executed to see the results. 
Acceptance Testing XE "Acceptance Testing" 
Throughout the development of the project, we will from time to time show our client Dr. Yu portions of what we have created to ensure that our design meets his needs.  This will give us the ability to make any changes to the system Dr. Yu sees fit during development.  If a portion of the system is not working to his approval, it will be redone until it meets his standards. XE "Test Plan" 
4.6  Prototypes


The FreeShell Live team will develop two prototypes during the Spring semester.

Original FreeShell in Visual Basic .NET
The source code for the original FreeShell knowledge base editor will be translated from Visual Basic 6.0 into Visual Basic .NET and submitted as a prototype. This will demonstrate that our team can use this language for the development of FreeShell Live without the need to rewrite the entire system.

This code will be suitable for compilation in Visual Studio .NET, and the executable it builds into will be analogous to the current FreeShell build.

HTML Expert System

A sample expert system will be developed using HTML and Javascript to serve as a proof-of-concept that an expert system can be represented using only these languages. 

This expert system will model the behavior of an expert system built using the current FreeShell program. A collection of standard questions will be asked through a form interface, followed by a series of one-at-a-time questions. The exact series of questions asked after the initial set will vary depending on the answers provided by the user. After a sufficient number of questions has been answered, the expert system will present a solution to the user.
5. Hardware and Software Requirements


Expected hardware for the project will be a PC with the appropriate specifications to run a current version of the Windows operating system. It follows that the expected software for the project will be a current Windows operating system, ex. Windows XP, Windows 2000, Windows ME, Windows 98. Microsoft Visual Studio will be used for development, either .NET or version 6.

6. Deliverables and Deadlines

· Knowledge base editor with publish-to-web capability. This will be delivered by December 12th, 2005.

· Software Documentation (Manuals, help files, sample knowledge bases). This will be delivered by December 2nd, 2005.

7. Efforts and Schedule


[image: image3.emf]ID Task Name Start Finish Duration

Apr 2005

4/3

6 10d 4/1/2005 3/21/2005

Port code from original Free Shell to 

Visual Basic .NET

7 15d 4/22/2005 4/4/2005 Clean and reorganize legacy code

10 10d 4/22/2005 4/11/2005

Build HTML prototype of a sample 

published expert system

11 5d 4/29/2005 4/25/2005 Review HTML prototype with client

8 10d 4/1/2005 3/21/2005

Research expert systems and methods 

for producing them in HTML

5d 4/8/2005 4/4/2005

Design HTML prototype of a sample 

published expert system

9

4/17 4/10 3/27

1 5d 3/28/2005 3/22/2005

Develop Coding Standards and 

Conventions

2 6d 3/31/2005 3/24/2005 Develop Contract

3 4d 4/5/2005 3/31/2005 Develop Design Specification

4 9d 4/18/2005 4/6/2005 Complete Project Design Presentation

5 10d 5/2/2005 4/19/2005 Complete Semester-Final Presentation

Mar 2005

3/20 4/24

-Full Team

-Greg Chabala and Bryan Kimbro

-Jonathan Birch and Mark Sparks


Figure 2 - Spring 2005 Schedule

Our Spring schedule is divided between the creation of necessary design documents and the generation of a throw-away prototype exemplifying the interface of an expert system published to HTML.


[image: image4.emf]ID Task Name Start Finish Duration

Dec 2005 Oct 2005 Nov 2005 Sep 2005

9/25 8/28 9/18 10/23 11/27 11/6 10/16 9/11 10/9 10/2 12/4 8/21 9/4 11/20 10/30 11/13

1 10d 9/2/2005 8/22/2005 Code initial version of publish-to-web

8d 9/14/2005 9/5/2005

Test and elicit feedback for initial 

publish-to-web version

10d 9/2/2005 8/22/2005 Fix Bugs in KBE

10d 9/16/2005 9/5/2005 Code additional desired KBE features

8d 9/28/2005 9/19/2005

Test and elicit feedback for Initial 

version of KBE

5d 9/23/2005 9/19/2005 Code second version of publish-to-web

8d 10/5/2005 9/26/2005

Test and elicit feedback for second 

publish-to-web version

5d 10/7/2005 10/3/2005 Code second version of KBE

5

5d 8/26/2005 8/22/2005

Develop test plan for initial publish-to-

web

7

5d 9/23/2005 9/19/2005

Develop test plan for second version of 

publish-to-web

3

2

6

5d 9/2/2005 8/29/2005

Develop test plan for initial version of 

KBE

9

10

11

18

17

15

13

12

5d 10/14/2005 10/10/2005 Code third version of publish-to-web

5d 10/14/2005 10/10/2005

Develop test plan for third version of 

publish-to-web

5d 10/21/2005 10/17/2005 Test third publish-to-web version

14

19

5d 10/7/2005 10/3/2005

Develop test plan for second version of 

KBE

5d 10/14/2005 10/10/2005 Test second version of KBE

20

21

22

23

10d 11/4/2005 10/24/2005 Integrate publish-to-web into KBE

10d 9/30/2005 9/19/2005 Develop initial product documentation

5d 10/28/2005 10/24/2005 Develop test plan for complete system

5d 11/11/2005 11/7/2005 Test complete system

24 10d 11/25/2005 11/14/2005 Fix errors in complete system

25 5d 11/11/2005 11/7/2005 Revise product documentation

26 5d 12/2/2005 11/28/2005 Perform final delivery activities

2d 9/16/2005 9/15/2005 Revise initial publish-to-web design 4

2d 9/30/2005 9/29/2005 Revise initial KBE design 16

2d 10/7/2005 10/6/2005 Revise second publish-to-web design 8

-Full Team

-Web Publishing Development (Jonathan Birch, Mark Sparks)

-KBE Development (Greg Chabala, Jonathan Birch)

-Testing (Bryan Kimbro, Mark Sparks)

-Integration (Jonathan Birch, Greg Chabala)

-Documentation Team (Greg Chabala)


Figure 3 - Fall 2005 Schedule

Our fall schedule begins with the creation of an initial version of the publish-to-web feature and the debugging of legacy code from the original Free Shell project. This will be followed by an incorporation of desired new features into the knowledge base editor. Evolutionary improvement of both systems will follow. Following a set deadline for the end of evolutionary improvement the publish-to-web feature will be integrated into the knowledge base editor. The final weeks of our fall schedule will be occupied by documentation creation and final delivery activities.
8. Measurements XE "Measurements"  


Every member of the team preforms the first measurement of our progress in the project. This measurement is our logs, in which we collect our personal time devoted to working on the project, be it working on the code itself, or documents, or simply research into a needed subject. These logs are available, like all documents for this project, from the senior project website.


The team leader, Jonathan Birth, has been producing status reports for our upper management. They give a current update on recent accomplishments in the progress of the project.
9. Risk Management 

The risks thus far:

· Limitations of HTML and JavaScript 

· Team Conflicts 

· Inability to Port Code Base XE "Code Base"  

· Error Prone Code Base XE "Code Base"  

· Contradiction Checking XE "Contradiction Checking" 
· Backtracking Difficulty XE "Backtracking Difficulty" 
· Completeness Checking XE "Completeness Checking" 
· Team Member Lost

· Early Finish

· Late Finish

Limitations of HTML and JavaScript


Once we begin implementing the web output functionality, we may find certain operations challenging or impossible to implement with just HTML and JavaScript.

Team Conflicts


Conflict could arise between team members, regarding the project itself or just tension between the members. This would slow progress until it is resolved.

Inability to Port Code Base XE "Code Base" 

It is proposed that the existing code be ported from its current implementation in Visual Basic 6 to Visual Basic .NET, or possibly Visual C++ .NET. It may happen that with closer examination, this code will not be portable, and either we will re-write large sections of code to allow porting the rest, or we will continue to develop the software in its native language.

Error Prone Code Base XE "Code Base" 

We may discover that errors in the inherited FreeShell code are more far reaching than originally thought. This could mean that there might be errors at a base level, causing the need for a thorough rewrite of the program to add the new features. It might also mean that segments of the program were implemented with poor programming practices, and adding features may cause unpredictable results unless additional changes are made.

Contradiction Checking XE "Contradiction Checking" 

We are unsure of what problems may arise as the contradiction checking functionality is added. It seems feasible, but it may prove challenging given the way we find FreeShell implemented.

Backtracking Difficulty XE "Backtracking Difficulty" 

We are unsure of what problems may arise as the backtracking functionality is added. It seems feasible, but it may prove challenging given the way we find FreeShell implemented.

Completeness Checking XE "Completeness Checking" 

We are unsure of what problems may arise as the completeness checking functionality is added. It seems feasible, but it may prove challenging given the way we find FreeShell implemented.

Team Member Lost


For whatever reason, a member of the team might have to drop the course or otherwise leave the project, and set back the productivity of the rest of the team as the load is redistributed.

Acceptance Issues


It may happen that while we are reviewing changes in the new system with our client, Dr. Yu informs us that a particular part of the system is against the view of his expected system. We would then need to make more changes to please the client's wishes.

Late Finish


The project could drag out as a combination of more slight influences, and risk not finishing.

	Risk
	Probability * Delay = Risk Exposure
	Solution

	Limitations of HTML and JavaScript
	50% * 3 Weeks = 1.5 Weeks
	A different direction for the project will have to be taken.

	Team Conflicts
	10% * 3 Weeks = 0.3 Weeks
	Team meeting.

	Inability to Port Code Base XE "Code Base" 
	15% * 5 Weeks = 0.75 Weeks
	Team will choose to re-write the code, or use the old language.

	Error Prone Code Base XE "Code Base" 
	30% * 2 Weeks = 0.6 Weeks
	Team will take more time to eliminate prior bugs.

	Contradiction Checking XE "Contradiction Checking" 
	10% * 2 Weeks = 0.2 Weeks
	Team will take more time to develop this function.

	Backtracking Difficulty XE "Backtracking Difficulty" 
	10% * 2 Weeks = 0.2 Weeks
	Team will take more time to develop this function.

	Completeness Checking XE "Completeness Checking" 
	10% * 2 Weeks = 0.2 Weeks
	Team will take more time to develop this function.

	Team Member Lost
	5% * 6 Weeks = 0.3 Weeks
	Team will take over the unfinished work.

	Acceptance Issues
	20% * 2 Weeks = 0.4 Weeks
	Team will perform extra revisions on the project to 

	Late Finish
	10% * 0 Weeks = 0 Weeks
	Low priority features will be left out and not critically impair the functionality of the system.

	Estimated Delay:  4.5 Weeks


10. Ethical Considerations


This program will be used for a class. If this program were to randomly damage the work of students, this would be a problem.


This program is a tool for making informed judgments. It should not, however, be used to make choices of an ethical nature, such as those concerning life and death, or other issues that deserve the attention of a human being.

Index



Abbreviations
3

Acceptance Testing
7

Acronyms
3

Backtracking Difficulty
2, 9, 10, 11

Code Base
2, 9, 10, 11

Completeness Checking
2, 9, 10, 11

Configuration Management
7

Contradiction Checking
2, 9, 10, 11

CORVID
3, 4

Definitions
3

expert system
3, 4, 6

Integration Testing
7

lifecycle model
5

Measurements
9

Methodologies
7

Module Testing
7

Policies
7

Process Model
5

Project Organization
5

References
4

Stakeholders
5

Standards
7

System Testing
7

Test Plan
7

Tools
7



PAGE  
11

_1173118286.vsd
Software Concept


Preliminary Requirements Analysis


Design of Architecture and System Core


Develop a Version


Develop a Version


Incorporate Customer Feedback


Deliver a Version


Incorporate Customer Feedback


Elicit Customer Feedback


Deliver a Version


Elicit Customer Feedback


Integration Testing


Deliver Final Version



_1175332321.vsd
Tasks


￼


￼


1


￼


￼


￼


￼


Text


ID


Task Name


Start


Finish


Duration



_1175332381.vsd
Tasks


￼


￼


1


￼


￼


￼


￼


Text



_1172990093.vsd
Name
Title


Name
Title


Name
Title


Name
Title


Name
Title


Name
Title


Team Title�

Name
Title


Company Name
￼�

�

�

Company Name
Department Name�

Dr. Bernhard Waxman
Upper Management


Dr. Xudong Yu
Client


Jonathan Birch
Project Manager


Mark Sparks
Lead Designer


Greg Chabala
Lead Programmer


Bryan Kimbro
Lead Tester


Team Extreme�


