
M & W 1:30 – 2:45 p.m. SE 1230 CS447 Spring 2023

CS447 : Networks and Data Communications
Programming Assignment #2

Total Points: 150

Assigned Date : Wednesday, April 05, 2023

Due Date : Wednesday, April 19, 2023 →HARD DEADLINE←

Overview

For your second project, you will extend your IRC application from P1 and improve it’s functionality. Specifically,
P2 adds the following new capabilities:

• PASS message to set a connection password.
• Server-to-Server communication following Internet Relay Chat: Server Protocol (RFC #2813) https://
tools.ietf.org/html/rfc2813 specifications.

• Authentication support.

Technical Requirements

ALL P1 technical requirements fully apply to the P2. Additionally, following new requirements should be met.

1. Support the PASS message listed on RFC #2812 Sec. 3.1.1. Note the recommended client registration order
PASS → NICK → USER listed under Sec. 3.1.

2. Support server-to-server communication specified in RFC #2813. At minimum, it’s advised to read Sections
3 and 4 of the RFC found at https://tools.ietf.org/html/rfc2813.

• Support the following Connection Registration (RFC #2813 Sec 4.1) messages: PASS, SERVER, NICK, and
SQUIT.

• Support the following Channel Operation (RFC #2813 Sec 4.2) messages: JOIN, and NJOIN.
• Any applicable numeric replies for the above.

Note:

The PASS, NICK, and JOINmessages have server-to-server communication specific parametric changes.
In other words, your PR1 implementations will not work out-the-box for server-to-server communi-
cation.

3. Authentication and Password Management: RFCs state that passwords are exchanged in plaintext (which
is not good!). Moreover, there isn’t a clear strategy on user authentication either. The following simplified
model is proposed as a solution.

(a) The same PASS value is used for both client and server registration. For servers, use the configuration
file to set PASS. This acts as a form of access-key into the IRC network but does not provide user
authentication. For now, we’ll use it as a viable server-to-server authentication (only).

(b) For client authentication, modify the NICK command to add a user-specific password as follows.
NICK <nickname> :<password> (e.g., NICK Wiz :wizpassword).

last updated: 04/04/23 @ 11:29am 1

https://tools.ietf.org/html/rfc2813
https://tools.ietf.org/html/rfc2813
https://tools.ietf.org/html/rfc2813


M & W 1:30 – 2:45 p.m. SE 1230 CS447 Spring 2023

(c) Upon successful registration, the client will receive an RPL_WELCOME (as per RFC). NOTE: During
testing, we will use QUIT and force the client the authenticate before proceeding with anything else.

(d) Passwords are encoded in Base64 before they are sent from a client to a server or exchanged between
servers.

(e) The receiving server will decode the received password → suffix S23447P2 to it (a.k.a salting) → encode
the salted password in base64 → store it in hidden password file. Each server will maintain it’s own
hidden password file named “.usr_pass”, and store each nickname against a password; we are loosely
mimicking how the /etc/shadow file works in Linux for password storage.

(f) On all successive connections, the receiving server verifies the received password against the stored
salted password by repeating the process mentioned above in step 3e and comparing the values.

(g) In the interest of time, we’ll bypass server-to-server authentication. However, if you propose and
implement a viable method, we’ll consider it for extra credit.

4. Only successfully authenticated clients and/or servers are allowed to proceed to use IRC features.
5. Each client only knows about and connects to one server and one server only.
6. Finally, use tcpdump https://www.tcpdump.org/manpages/tcpdump.1.html to capture server->server traffic.

Provide screenshots in your report.

Logistics

All P1 Logistics requirements applies to P2. The following additional requirements are listed mostly for clarification
purposes.

1. Address any pending issues from P1 before starting P2 implementation.
2. Base64 encoding/decoding, hidden file creation, and log file creation should be done programmatically.
3. Print all reply codes on all interactions to the standard output.

4. At the end of your implementation, you should be able to:

• Compile and run your code on a typical Linux machine(s). Include a readme file with clear compilation
instructions and any additional software the grader might have to install.

• Run your server programs first.
• Run two or more clients and register with different servers.
• Properly authentication and/or re-authenticate upon each connection initiation.
• Create channels. Engage with other users through IRC.
• Have private chats between clients through server relays.
• Exit the client(s) gracefully.
• Exit servers gracefully through SQUIT.

5. It is recommended to test your system with at least 3 servers. Bare minimum, you should test your
implementation with 2 servers and more than 2 clients. Also, verify the behavior of the overall IRC when
a server exits using SQUIT. Read Sections 3 and 5 of RFC #2810 (https://tools.ietf.org/html/rfc2810)
and incorporate some of the case studies listed therein in your testing.

6. Runtime arguments are fed using the appropriate config files (just like in P1). NOTE: Given the nature of
the assignment, each server will have it’s own configuration file with different values. Specifically, there will
SOCK_ADDR line for each known remote server. As an example, consider a particular server which is connected
to two other servers. The corresponding config file will look like the following:

server_1.conf

NICK=babbage
PASS=supersecretpassword
PORT=45345
SERVERS=2
SOCK_ADDR=192.168.0.14:1245
SOCK_ADDR=192.168.0.19:62012

last updated: 04/04/23 @ 11:29am 2

https://www.tcpdump.org/manpages/tcpdump.1.html
https://tools.ietf.org/html/rfc2810


M & W 1:30 – 2:45 p.m. SE 1230 CS447 Spring 2023

Instructions

• Start early!!. This is a fairly loaded assignment for 2 weeks.
• Take backups of your code often!!. Practice good version control habits
• Follow a good coding standard. Use one of Google’s coding standard found here https://google.github.
io/styleguide/, if you don’t already follow one.

• In addition to sections explicitly listed above, it is recommended to read other relevant sections of the RFC
#2810, #2812, #2813 before resorting to ask the instructor.

• This assignment is fully intended to be implemented with just the socket package and the base64 package.
Use of any other package, except basic I/O, regex, or string parsing packages, without the instructor’s explicit
permission, will nullify your submission.

• Absolutely do not include executables, folders created by your programs, hidden files, version control
repositories, or any irrelevant files in this tarball. All project relevant file formatting standards (PDF, README,
.txt, .tgz) will be strictly monitored and are subject to penalties.

• The due date of this assignment is Wednesday, April 19, 2023 (HARD DEADLINE) . A Moodle dropbox
will be opened for submission on Moodle.

Deliverables

A complete solution comprises of:

• A short report of the design and implementation of your system. The report should be PDF format. At a
minimum, your report should include the following sections:

– Introduction: Your objective and what you hope to gain from the assignment.
– Overall design, specific design choices, and reply codes used.
– The output of a sample run (including screenshots where applicable).
– Summary and Issues encountered. What you were able to achieve from your own objectives (from the

introduction) as well as project specifications. Make sure to explicitly list functionality you failed to
implement (or buggy).

• A compressed tarball that contains:

– a directory containing (only) your source code and config files. Do not include executables, folders
created by your programs, or any other files not specifically listed here as required.

– A short readme file with compilation instructions.
– A makefile to automate compilation.

To create a compressed tarball of the directory source, use the following command:
tar -zcvf siue-id-pr2.tar.gz source/.
e.g. tar -zcvf tgamage-pr2.tar.gz P2/

Collaborating on ideas or answering each other’s questions is always encouraged. Most times, I find that you
learn a lot from your peers. However, do not share/copy/duplicate code from others, including online sources.
The exercise is meant for you to learn network programming, not to test your googling abilities. Issues related to
academic integrity and plagiarism have ZERO tolerance.

Useful Resources

• Linux Man pages – found in all linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic network program-

ming https://beej.us/guide/bgnet/pdf/bgnet_usl_bw_1.pdf
• Internet Relay Chat: Client Protocol RFC #2812 https://tools.ietf.org/html/rfc2812

last updated: 04/04/23 @ 11:29am 3

https://google.github.io/styleguide/
https://google.github.io/styleguide/
https://beej.us/guide/bgnet/pdf/bgnet_usl_bw_1.pdf
https://tools.ietf.org/html/rfc2812


M & W 1:30 – 2:45 p.m. SE 1230 CS447 Spring 2023

• Internet Relay Chat: Architecture RFC #2810 https://tools.ietf.org/html/rfc2810
• Internet Relay Chat: Channel Management RFC #2811 https://tools.ietf.org/html/rfc2811
• Internet Relay Chat: Server Protocol RFC #2813 https://tools.ietf.org/html/rfc2813
• The University of Chicago χ-Project http://chi.cs.uchicago.edu/chirc/irc.html
• Base64 encoding/decoding:

– C/C++

* openssl http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
* glib – https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
* GNU coreutils http://www.gnu.org/software/coreutils/coreutils.html

– Additional Resource – http://rosettacode.org/wiki/Base64_encode_data#C

If you use any other resources, make sure to cite those in your report. Using online resources does not mean
you are allowed to copy and use someone else’s code for your purpose. Such incidents, if detected, will be
treated as academic dishonesty.

last updated: 04/04/23 @ 11:29am 4

https://tools.ietf.org/html/rfc2810
https://tools.ietf.org/html/rfc2811
https://tools.ietf.org/html/rfc2813
http://chi.cs.uchicago.edu/chirc/irc.html
http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
http://www.gnu.org/software/coreutils/coreutils.html
http://rosettacode.org/wiki/Base64_encode_data#C

