
M & W 01:30 – 02:45 p.m. SE 1230 CS447 Spring 2023

CS447 : Networks and Data Communications
Programming Assignment #0

Total Points: 75

Assigned Date : Wednesday, February 01, 2023

Due Date : Wednesday, February 15, 2023 @ 01:29:59 p.m.

Overview

Your first programming assignment is to implement a basic client/server application using the socket interface.
This programming assignment is meant as a setup assignment for PR01 and PR02, and has the following learning
objectives:

a. to get your feet wet on socket programming basics;
b. to understand the ordering of the socket interface primitives;
c. to get you exposed to Linux system calls (if you already haven’t);
d. to gain a basic understanding of network protocols; and
e. to set yourself up for the rest of the course.

Back Story

Captain Haddock and his crew are not big fans of unit conversions, but regularly have to convert from/to imperial
to/from metric during their sea voyages. Professor Calculus, who recently took CS447 at SIUE, thinks he has a
solution. Calculus agreed to create an online unit conversion calculator application for Haddock that has a rapid
response but not necessarily reliable; Haddock is fine with that as he is all about speed. Not only that, Calculus
agrees to create this calculator in a way that more than one person can use it at the same time. For this initial
release, Calculus plans to support conversions between 14 types of units, grouped into 4 modes.

1. AREA – Conversions between Square Meters, Square Miles, Square Inches, and Square Foot
2. VOL – Conversions between Liters, US Gallons, Imperial Gallons, and Cubic Meters
3. WGT – Conversions between Kilograms, Pounds, and Carrots
4. TEMP – Conversions between Celsius, Fahrenheit, and Kelvin

Technical Requirements

• All server ↔ client interactions should use UDP as the underlying transport layer protocol.
• Server should be capable of accepting requests multiple concurrent UDP clients. In other words, more than

one client should be able to use the calculator without interfering with each others calculations.
• Your protocol interaction should adhere to the following specifications.
• Client Commands:

1. HELO <server-hostname> – This is the first command issued by the client (→ server).
2. HELP – This command can be issued anytime after the HELO command.

last updated: 01/30/23 @ 11:32am 1



M & W 01:30 – 02:45 p.m. SE 1230 CS447 Spring 2023

3. There are 4 mode selection commands – AREA, VOL, WGT, and TEMP – which correspond to Area, Volume,
Weight, and Temperature respectively. A successful mode selection is acknowledged by the server with a
mode specific unique reply code.

4. Each mode has a certain number of sub-commands. All sub-commands have the following command
syntax format: <from-unit> <to-unit> <value>
(a) The AREA mode should support conversions between SQRMT, SQRML, SQRIN, and SQRFT (corresponding

to Square Meters, Square Miles, Square Inch, and Square Foot respectively).
(b) The VOL mode should support conversions between LTR, GALNU, GALNI, and CUBM (corresponding to

Liters, US Gallons, Imperial Gallons, and Cubic Meters respectively).
(c) The WGT† mode should support conversions between KILO, PND, and CART (corresponding to Kilograms,

Pounds, and Carrot respectively).
(d) The TEMP† mode should support conversions between CELS, FAHR, and KELV (corresponding to Celsius,

Fahrenheit, and Kelvin respectively).
5. Users may switch the mode anytime during the interaction.
6. BYE <server-hostname> – This command closes the connection and requests a graceful exit. Similar to

mode switching, users may request a graceful exit anytime during the interaction.

• Server Reply Codes:

1. 200/210/220/230†/240† Command Success. The command success reply code is issued only when the
interaction happens according to the correct specification. Examples:

– 200 HELO 192.168.0.11(UDP) – If the HELO command is issued as the first command. Note: The
client’s IP address and the connection type should be derived from the incoming connection (and
should not be hard coded).

– 200 <menu> – If the HELP command is issued after HELO. the calculator menu is sent with this reply
code.

– 210 AREA Mode ready! – If the AREA command is issued at the correct point of interaction. Reply
codes, 220,230†,240† correspond to VOL,WGT,TEMP mode selections respectively.

2. 250 <answer> – This reply code is issued in response to a correct calculator command syntax received in
the previous message from client. answer is the calculated value.

3. 500 – Syntax Error, command unrecognized.
4. 501 – Syntax error in parameters or arguments.
5. 503 – Bad sequence of commands.
6. 504 – Bad conversion request.

Functional Requirements

1. IP addresses/hostnames and port numbers should not be hard coded. They are provide at runtime through
configuration files‡ (e.g. server.conf) present in the same working directory.

• Your server executable will accept a single runtime argument through a configuration file as follows:
./server server.conf

server.conf

UDP_PORT=xxxx

• Similarly, your client executable will two runtime arguments through a configuration file as follows:
./client client.conf

client.conf

†Extra Credit
‡Note: A configuration file is simply a text file with a .conf extension.

last updated: 01/30/23 @ 11:32am 2



M & W 01:30 – 02:45 p.m. SE 1230 CS447 Spring 2023

SERVER_IP=y.y.y.y
SERVER_PORT=xxxx

This are considered the default execution behavior for the servers and clients. No deviations allowed.

2. We will test with at least 2+ concurrent client connections, thus, your server should be multi-threaded.
3. Client’s should exit gracefully. Server process is permitted to be forcefully killed.
4. Here’s a sample (non-comprehensive) interaction. Assume the client’s IP address is 192.168.0.11 and running

UDP and the server’s hostname is calco. Note: The server must recognize client IP and connection type.

Client Server
HELO calco →

← 200 HELO 192.168.0.11(UDP)
LTR CUBM 2 →

← 503 Wrong Command Order: Mode not selected
HELP →

← 200 <menu-sent-back>
VOL →

← 230 VOLUME Mode ready!
CUBM LTR 2 →

← 250 2000
BYE calco →

← 200 BYE 192.168.0.11(UDP)

5. Your client and server should be able to run on two separate end systems. Bare minimum, you should verify
an interaction between a client running one zone server container while the server is running on another.

6. At the end of your implementation, you should be able to:

• Compile and run your code in a Linux machine. Include a README file with clear compilation instructions
and any non-standard Linux software requirements.

• Run your server program first.
• Run one or more clients to connect to the server.
• Perform calculator functionality while meeting the technical requirements mentioned above.
• Exit the client(s) gracefully.

Extra Credit†

• The WGT and TEMP modes are for extra credit and are not considered as part of the core implementation of this
assignment.

• Only assignments that grade 90%+ will be considered for extra credit evaluation. In other words, the extra
credit will not be used to supplement deficiencies in your core implementation.

• The extra credit has no partial credit. You must implement both modes along with all corresponding
sub-commands and reply codes correctly to be eligible for extra credit.

Instructions

• Start early!!. This is a simple yet fairly loaded assignment.
• Take backups of your code often!!.
• Implementation language must be C/C++.
• Use the talker.c and listener.c from the Beej’s Guide to Network Programming (see Resources section

below) as your ONLY permissible starter code. Absolutely no deviations. Although this code is earmarked as
a C code, it will readily compile for C++ as is.

last updated: 01/30/23 @ 11:32am 3



M & W 01:30 – 02:45 p.m. SE 1230 CS447 Spring 2023

• Follow a good coding standard. Use one of Google’s coding standard found here https://google.github.
io/styleguide/, if you don’t already follow one.

• Your code must compile and run on a typical Linux setup. Neither the instructor nor his graders will use (or
entertain the use of) any IDE to test your implementation. Be sure to test command line compilation and run
before submission.

• Absolutely do not include executables, folders created by your programs, hidden files, version control
repositories, or any irrelevant files in this tarball. All project relevant file formatting standards (PDF, README,
.txt, .tgz) will be strictly monitored and are subject to penalties.

• The due date of this assignment is Wednesday, February 15, 2023 @ 01:29:59 p.m. . A Moodle dropbox will
be opened for submission.

• Based on past student experience, multi-threading, especially handling multiple parallel UDP clients at the
server end, is not trivial. I suggest you to first get a single-threaded version working correctly and then think
about extending it to multi-threading.

• This assignment can be fully developed using the socket API of your programming language and basic I/O
API. Use of other packages/libraries without the instructors permission is not permitted.

Deliverables

A complete solution comprises of:

• A short report of the design and implementation of your system. The report should be PDF format. At a
minimum, your report should include the following sections:

– Introduction: Your objective and what you hope to gain from the assignment.
– Overall design, specific design choices, and reply codes used. Specifically explain how you achieved

concurrent client support.
– The output of a sample run. Include plenty screenshots wherever applicable. In situations were we can’t

verify expected behavior, your screenshots maybe considered for partial credit.
– Summary and Issues encountered. What you were able to achieve from your own objectives (from the

introduction) as well as project specifications. Make sure to explicitly list functionality you failed to
implement (or buggy).

• A compressed tarball that contains:

– a directory containing (only) your source code and config files. Do not include executables, folders
created by your programs, or any other files not specifically listed here as required.

– A short README file with compilation and run instructions.
– A makefile (mandatory) to compile your code especially if it involves compiling multiple executables

with flag options.

To create a compressed tarball of the directory source, use the following command:
tar -zcvf siue-id-p0.tgz source/.
e.g. tar -zcvf tgamage-p0.tgz P0/

Collaborating on ideas or answering each other’s questions is always encouraged. Most times, I find that you learn
a lot from your peers. However, do not share/copy/duplicate code from others, including online sources AND
AI assisted code generators. If you find a useful article or a source code online, firstly cite it in your report, and
secondly, get the idea from it and do your own implementation. Absolutely do not directly copy-paste code from
online sources.
The exercise is meant for you to learn network programming, not to test your googling abilities. The instructor
actively uses MOSS http://theory.stanford.edu/~aiken/moss/ to check for software similarity. Issues related
to academic integrity and plagiarism have ZERO tolerance and will result in a failing grade for the course.

last updated: 01/30/23 @ 11:32am 4

https://google.github.io/styleguide/
https://google.github.io/styleguide/
http://theory.stanford.edu/~aiken/moss/


M & W 01:30 – 02:45 p.m. SE 1230 CS447 Spring 2023

Some Useful Resources

• Linux Man pages – found in all Linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic network programming

for C/C++ https://beej.us/guide/bgnet/
• Linux Socket Programming In C++ – https://tldp.org/LDP/LG/issue74/tougher.html
• The Linux HOWTO Page on Socket Programming – https://www.linuxhowtos.org/C_C++/socket.htm

last updated: 01/30/23 @ 11:32am 5

https://beej.us/guide/bgnet/
https://tldp.org/LDP/LG/issue74/tougher.html
https://www.linuxhowtos.org/C_C++/socket.htm

