Cryptography = (R o S
and Network Secunty /= ' Forouzan

Chapter 10

Asymmetric-Key
Cryptography

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10.1

10.1.1 Keys

Asymmetric key cryptography uses two separate keys: one
private and one public.

Figure 10.1 Locking and unlocking in asymmetric-key cryptosystem

Bob’s Bob’s
public key private key

|I The public key locks; the private key unlocks. I i

Encryption Decryption
algorithm algorithm

Communication direction

Alice Bob
10.2

10.1.2 General Idea

Figure 10.2 General idea of asymmetric-key cryptosystem

Bob
3
To public s
T _ _I L _T _____________________ Key-generation
Alice] Public-key distribution procedure
‘£ : channel
=il I
|
Public key i Private key
— - .
Plaintext Ciphertext Insecure channel Ciphertext Plaintext

10.3

i 10.1.2 Continued

Plaintext/Ciphertext
Unlike In symmetric-key cryptography, plaintext and
ciphertext are treated as integers In asymmetric-key

cryptography.

Encryption/Decryption

C=f1 (Kpublic’ P) P = g(Kprivate ’ C)

10.4

i 10.1.3 Need for Both

There Is a very Important fact that Is sometimes
misunderstood: The advent of asymmetric-key

cryptography does not eliminate the need for symmetric-
key cryptography.

10.5

| 10.1.4 Trapdoor One-Way Function

The main idea behind asymmetric-key cryptography is the
concept of the trapdoor one-way function.

10.6

Functions

Figure 10.3 A function as rule mapping a domain to a range
y=fx)

‘L 10.1.4 Continued

One-Way

~unction (OWF)

1. f Is easy to compute.
2. T ~tis difficult to compute.

Trapdoor One-Way Function (TOWF)

3. Given y and a trapdoor, x can be
computed easily.

10.7

10.1.4 Continued

Example 10. 1

When n is large, n = p x g is a one-way function. Given p and
g, it is always easy to calculate n ; given n, it is very difficult to
compute p and d. This is the factorization problem.

Example 10. 2

When n is large, the function y = x mod n is a trapdoor one-
way function. Given X, k, and n, it is easy to calculate y. Given
y, K, and n, it is very difficult to calculate x. This is the discrete
logarithm problem. However, if we know the trapdoor, k' such
that k x k'=1 mod ¢(n), we can use x = y¥ mod n to find x.

10.8

‘L 10.1.5 Knapsack Cryptosystem

Definition
a=|[a;,a,..,a]and X=[Xy, Xy ..., X].

s = knapsackSum (a, x) = xja; +xa, + --- + Xpa,

Given a and x, It Is easy to calculate s. However, given s
and a it is difficult to find x.

Superincreasing Tuple

a za, ta,+...ta,_,

10.9

10.1.5 Continued

Algorithm 10.1 knapsacksum and inv_knapsackSum for a superincreasing k-tuple

10.1.5 Continued

Example 10. 3

As a very trivial example, assume that a = [17, 25, 46, 94,
201,400] and s = 272 are given. Table 10.1 shows how the
tuple x is found using inv_knapsackSum routine in Algorithm
10.1. Inthis case x =0, 1, 1, O, 1, O], which means that 25, 46,
and 201 are in the knapsack.

Table 10.1 Values of i, a;, s, and x; in Example 10.3

l a; s S 2 a; X; S & S—a;XX;
6 400 272 false xg=0 272
5 201 272 true X5 = 71
4 94 71 false x4=0 71
3 46 71 true xy=1 25
2 25 25 true Xy =1 0
1 17 0 false x| = 0

10.11

10.1.5 Continued

Secret Communication with Knapsacks.

Bob
Figure 10.4 Secret communication with knapsack cryptosystem
Key generation
T T T (a) Selectb=[b;, b,, . . ., D]
- Select modulus # and r
_ To public Calculate a =[ay, a,, . . ., a;]
Alice
£
=== (b, r, n) | Private
Y
j?(a) (b, 1, n) i
Ciphertext, s | [8'=r "I x s mod n
X —> § = knapsackSum (x, a) »| X' = inv_knapsackSum (S', b) —> X
Plaintext x = permute (x') Plaintext
Encryption Decryption

10.12

10.1.5 Continued
Example 10. 4

This 1s a trivial (very insecure) example just to show the
procedure.

1. Key generation:
a. Bob creates the superincreasing tuple b =1[7, 11, 19, 39,79, 157, 313].
b. Bob chooses the modulus n =900 and r =37, and [42 53 17 6] as permutation table.
c. Bob now calculates the tuple =[259, 407, 703, 543, 223, 409, 781].
d. Bob calculates the tuple a = permute (1) = [543, 407, 223, 703, 259, 781, 409].

e. Bob publicly announces a; he keeps n, r, and b secret.

2. Suppose Alice wants to send a single character “g”” to Bob.

a. She uses the 7-bit ASCII representation of “g”, (1100111),, and creates the tuple x =
[1,1,0,0, 1, 1, 1]. This is the plaintext.

b. Alice calculates s = knapsackSum (a, x) = 2165. This is the ciphertext sent to Bob.

3. Bob can decrypt the ciphertext, s = 2165.
a. Bob calculates s’ = s X 7! mod n = 2165 x 37! mod 900 = 527.
b. Bob calculates x" = Inv_knapsackSum (s, by =11,1,0, 1,0, 1, 1].
c. Bob calculates x = permute (x') =[1, 1,0, 0, 1, 1, 1]. He interprets the string (1100111),
as the character “g”

o
& -

10.13

The most common public-key algorithm is the RSA
cryptosystem, named for its inventors (Rivest, Shamir,
and Adleman).

Topics discussed in this section:

10.2.1 Introduction

10.2.2 Procedure

10.2.3 Some Trivial Examples

10.2.4 Attacks on RSA

10.2.5 Recommendations

10.2.6 Optimal Asymmetric Encryption Padding (OAEP)
10.2.7 Applications

10.14

10.2.1 Introduction

Figure 10.5 Complexity of operations in RSA

Eve
Alice 0 Bob
I . 0
. 2 -
P e Exponential P
h 4 . P=yC modn complexity :
C = P° mod 1 Polynomlal Polynom}al P =% mod n I
complexity complexity
A
C C C

Insecure channel

RSA uses modular exponentiation for encryption/decryption;
To attack it, Eve needs to calculate ¢/C mod n.

10.15

10.2.2 Procedure

Figure 10.6 Encryption, decryption, and key generation in RSA

Bob
L
T T T Key calculation in
| | | G:<Z¢(n)*> X >
| | |
| [[Select
,_L___L___l____(if)_ ______ e_ecf’q
Alice [To public W=
g : Select e and d
j== |
! Private | (d)
\ 4
FPen i
C: Ciphertext
P—>» C=P°modn I——>(]—\ » P=C%modn I—>P
Plaintext o — Plaintext
Encryption in Decryption 1n
R=<Z,,+ x> R=<Z,+ x>

10.16

10.2.2 Continued

Two Algebraic Structures

Encryption/Decryption Ring:

R=<Z_ ,+ x>

Key-Generation Group: |G =<Z 4% X >

RSA uses two algebraic structures:
a public ring R = <Z,,, +, X> and a private group G = <Z,*, X>.

10.17

10.2.2 Continued

Algorithm 10.2 RSA Key Generation

RSA_Key_Generation
{
Select two large primes p and ¢ such that p # ¢.
n <« pxq
d(n) <« (p-1)x(q —1)
Select e such that 1 < e < ¢(n) and e is coprime to ¢(n)
d < ¢ 'mod o(n) /] d 1s inverse of ¢ modulo ¢(n)
Public_key « (e, n) // ' To be announced publicly
Private_key < d /I ' To be kept secret
return Public_key and Private_key

10.18

10.2.2 Continued

Encryption

Algorithm 10.3 RSA encryption

RSA_Encryption (P, ¢, n) // P is the plaintext in Z, and P <n
{

C <« Fast_Exponentiation (P, ¢, n) // Calculation of (P¢ mod n)

return C

In RSA, p and ¢ must be at least 512 bits; » must be at least 1024 bits.

10.19

10.2.2 Continued

Decryption

Algorithm 10.4 RSA decryption

RSA_Decryption (C, d, n) /IC 1s the ciphertext in Z,
{
P <« Fast_Exponentiation (C, d, n) /I Calculation of (Cd mod n)

return P

10.20

‘L 10.2.2 Continued

Proof of RSA

‘ It n=pxgqg,a<n, and k 1s an integer, then a

kxo(m+l =) (mod n).

P, = C? mod n = (P mod n)* mod n = P mod n
ed = ko(n) + 1

P, =P““modn — P; =P+ mod n

P, =P+ mod n = Pmodn

/I d and e are inverses modulo ¢(n)

// Euler’s theorem (second version)

10.21

10.2.3 Some Trivial Examples
Example 10. 5

Bob chooses 7 and 11 as p and q and calculates n = 77. The
value of ¢(n) = (7 — 1)(11 — 1) or 60. Now he chooses two
exponents, e and d, from Z,*. If he chooses e to be 13, then d
IS 37. Note that e x d mod 60 = 1 (they are inverses of each
Now imagine that Alice wants to send the plaintext 5 to Bob.
She uses the public exponent 13 to encrypt 5.

Plaintext: 5 C =5 =26 mod 77 Ciphertext: 26

Bob receives the ciphertext 26 and uses the private key 37 to
decipher the ciphertext:

Ciphertext: 26 P=26"=5mod 77 Plaintext: 5

10.22

10.2.3 Some Trivial Examples
Example 10. 6

Now assume that another person, John, wants to
send a message to Bob. John can use the same
public key announced by Bob (probably on his
website), 13; John’s plaintext is 63. John calculates

the following:

Plaintext: 63 C =633 =28 mod 77 Ciphertext: 28

Bob receives the ciphertext 28 and uses his private key 37 to
decipher the ciphertext:

Ciphertext: 28 P =28 =63 mod 77 Plaintext: 63

10.23

10.2.3 Some Trivial Examples
Example 10. 7

Jennifer creates a pair of keys for herself. She
chooses p = 397 and q = 401. She calculates
n = 159197. She then calculates ¢(n) = 158400. She
then chooses e = 343 and d = 12007. Show how Ted
can send a message to Jennifer if he knows e and n.

Suppose Ted wants to send the message “NO” to
Jennifer. He changes each character to a number
(from 00 to 25), with each character coded as two
digits. He then concatenates the two coded
characters and gets a four-digit number. The plaintext
Is 1314. Figure 10.7 shows the process.

10.24

10.2.3 Continued

Figure 10.7 Encryption and decryption in Example 10.7

Ted Jennifer

(343, 159197) (12007)

¥

10.25

10.26

10.2.4 Attacks on RSA

Figure 10.8 Taxonomy of potential attacks on RSA

Factorization I

Chosen-ciphertext I

Encryption exponent I Coppersmith, broadcast,
el P related messages, and short pad

Potential attacks
on RSA

Decryption exponent | Revealed and low exponent

Plaintext I Short message, cyclic, and unconcealed

Modulus | Common modulus

Implementation | Timing and power

10.2.6 OAEP

Figure 10.9 Optimal asymmetric encryption padding (OAEP)

M: Padded message P: Plaintext (P || P;) G: Public function (k-bit to m-bit)
r: One-time random number C: Ciphertext H: Public function (m-bit to k-bit)
Message | < m bits Message | <m bits
A
Y ' H H
M m bits M m bits
Y m bits k bits bit
m bits @—— m bits
- " k bits
HA H
“Jk bits J bits
<
)1
Py P, Py P,
1 (m + k) bits 1 (m + k) bits
Encryption Decryption
¥ (m + k) bits (m + k) bits
C C
Sender Receiver

10.27

10.2.6 Continued
Example 10. 8

Here is a more realistic example. We choose a 512-bit p
and g, calculate n and ¢(n), then choose e and test for
relative primeness with ¢(n). We then calculate d.
Finally, we show the results of encryption and
decryption. The integer p is a 159-digit number.

p= 961303453135835045741915812806154279093098455949962158225831508796
479404550564706384912571601803475031209866660649242019180878066742

1096063354219926661209

q= 120601919572314469182767942044508960015559250546370339360617983217
314821484837646592153894532091752252732268301071206956046025138871

45524969000359660045617

10.28

10.2.6 Continued
SEnloCHRE Continued

The modulus n =p x g. It has 309 digits.

n= 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656772727460097082714127730434960500556347274566
628060099924037102991424472292215772798531727033839381334692684137
327622000966676671831831088373420823444370953

¢(n) = (p — 1)(q — 1) has 309 digits.

O(n)= | 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656751054233608492916752034482627988117554787657
013923444405716989581728196098226361075467211864612171359107358640
614008885170265377277264467341066243857664128

10.29

10.2.6 Continued
SEnloCHRE Continued

Bob chooses e = 35535 (the ideal is 65537) and tests it to
make sure it is relatively prime with ¢(n). He then finds
the inverse of e modulo ¢(n) and calls it d.

e= 35535

d= 58008302860037763936093661289677917594669062089650962 1804228661113
8059385282235873170628691003002171085904433840217072986908760061 15
306202524959884448047568240966247081485817130463240644077704833134
010850947385295645071936774061197326557424237217617674620776371642
0760033708533328853214470885955136670294831

10.30

10.2.6 Continued
SEnloCHRE Continued

Alice wants to send the message “THIS IS A TEST?”,
which can be changed to a numeric value using the
00—26 encoding scheme (26 is the space character).

P =

1907081826081826002619041819

The ciphertext calculated by Alice is C = P¢, which is

C=

10.31

475309123646226827206365550610545180942371796070491716523239243054
452960613199328566617843418359114151197411252005682979794571736036
101278218847892741566090480023507190715277185914975188465888632101
14835410336165789846796838676373376577746562507928052114814 1844048
14184430812773059004692874248559166462108656

10.2.6 Continued
SEnloCHRE Continued

Bob can recover the plaintext from the ciphertext using
P = Cd, which is

P = ‘ 1907081826081826002619041819

The recovered plaintext is “THIS IS A TEST” after
decoding.

10.32

The Rabin cryptosystem can be thought of as an RSA
cryptosystem in which the value of e and d are fixed.
The encryption is C = P? (mod n) and the decryption is
P =CY2 (mod n).

Topics discussed in this section:
10.3.1 Procedure
10.3.2 Security of the Rabin System

10.33

10-0 Continued

Figure 10.10 Rabin cryptosystem

Key generation

(n)

P —>| C=P2modn | J >‘ Qua_dratic I—)P
Plaintext C JETLTE: Plaintext

Encryption in Decryption in
<Zn=|=7><> <Zn*5><>

Ao 4
R T T S i Select p, g
: Public n=pxq
I
: Eve
Alice I r
| — .
=!___a | . (p, q) | Private
— : Infeasible | ?
Y \ 4
P=VC modn
j? . 9 i

10.34

10.3.1 Procedure

Key Generation

Algorithm 10.6 Key generation for Rabin cryptosystem

Rabin_Key_Generation
{
Choose two large primes p and ¢ in the form 4k + 3 and p # ¢.
n <« pxgq
Public_key « n // To be announced publicly
Private_key <« (g, n) /I To be kept secret
return Public_key and Private key
}

10.35

10.3.1 Continued

Encryption

Algorithm 10.7 Encryption in Rabin cryptosystem

Rabin_Encryption (n, P)
{

C « P’modn
return C

/I n 1s the public key; P is the ciphertext from Z,,*

/I C is the ciphertext

10.36

10.3.1 Continued
Decryption

Algorithm 10.8 Decryption in Rabin cryptosystem

Rabin_Decryption (p, g, C) /I C is the ciphertext; p and g are private keys
{

a; «— +HCP*V% mod p
ar «— —(CP*D"*y mod p
by « +CYD*y mod ¢
by «— —(C*D™ymod ¢

// The algorithm for the Chinese remainder algorithm is called four times.

P, < Chinese_Remainder (a, by, p, g)
P, <« Chinese_Remainder (a, b5, p, g)
P3y < Chinese_Remainder (a», b, p, g)
P, < Chinese_Remainder (a,, b», p, q)
return Py, P», P53, and P4

‘ Note I

The Rabin cryptosystem is not deterministic:
Decryption creates four plaintexts.

10.37

10.3.1 Continued
Example 10. 9

Here is a very trivial example to show the idea.

1.

10.38

Bob selects p = 23 and q = 7. Note that both are

congruent to 3 mod 4.

Bob calculates n=p x g = 161.

Bob announces n publicly; he keeps p and g private.

Alice wants to send the plaintext P = 24. Note that 161 and 24
are relatively prime; 24 is in Z,5,*. She calculates C = 242 =93

mod 161, and sends the ciphertext 93 to Bob.

10.3.1 Continued
Example 10. 9

5. Bob receives 93 and calculates four values:
a, = +(93 ?3*D/4)y mod 23 = 1 mod 23
a, =—(93 23*D/4)y mod 23 = 22 mod 23
b, = +(93 "*Y4)mod 7 =4 mod 7
b, =—(93 "*Y4)mod 7 =3 mod 7

6. Bob takes four possible answers, (a,, b,), (a;, b,), (a,, b;), and
(a,, b,), and uses the Chinese remainder theorem to find four
possible plaintexts: 116, 24, 137, and 45. Note that only the
second answer is Alice’s plaintext.

10.39

Besides RSA and Rabin, another public-key
cryptosystem is ElGamal. ElGamal is based on the
discrete logarithm problem discussed in Chapter 9.

Topics discussed in this section:
10.4.1 ElGamal Cryptosystem
10.4.2 Procedure

10.4.3 Proof

10.4.4 Analysis

10.4.5 Security of EIGamal

10.4.6 Application

10.40

‘L 10.4.2 Procedure

Figure 10.11 Key generation, encryption, and decryption in EIGamal

[
[= =] y
Key generation
A A A Select p (Ver_y l_a_rge prime)
e e] _|Select e, (primitive root)
Alice : Public key: (e, e,, p) Selectf{i
i ' e, =¢e," mod p
3 |
|
: Private key: d
v
(e1, €2, p)
? d
C rod Ciphertext: (C,, C5) i
P_y‘ 1i€1 rmO P r) }— P=[C, x(C d)_l]mod p
Flamtext SR YLD _b(' : - . . Plaintext
Encryption Decryption

10.41

10.4.2 Continued

Key Generation

Algorithm 10.9 EiGamal key generation

ElGamal_Key_Generation

{

Select a large prime p

Select d to be a member of the group G =<

Z % x>suchthat 1 <d<p-2

Select ¢ to be a primitive root in the group G =<Z *, X >

ey — eld mod p
Public_key <« (eq, e5, p)
Private_key « d

return Public_key and Private_key

p -

// To be announced publicly

// ' To be kept secret

10.42

10.4.2 Continued

Algorithm 10.10 EiGamal encryption

ElGamal_Encryption (¢, ¢5, p, P) /I P 1s the plaintext
{

Select a random integer r in the group G =<Z,*, X >
C, < e¢//"modp
Cy, « (Pxey)ymodp /I Cy and C, are the ciphertexts

return C and C,

10.43

10.4.2 Continued

Algorithm 10.11 EiGamal decryption

ElGamal_Decryption (d, p, C;, C,) // C and C, are the ciphertexts
{

P « [Cy (_Cld) _l] mod p /I P 1s the plaintext

return P
)

‘ Note I

The bit-operation complexity of encryption or
decryption in EIGamal cryptosystem is polynomial.

10.44

10.4.3 Continued
Example 10. 10

Here is a trivial example. Bob chooses p = 11 and e, = 2.
and d = 3 e, = e,% = 8. So the public keys are (2, 8, 11)
and the private key Is 3. Alice chooses r = 4 and calculates
C1 and C2 for the plaintext 7.

Plaintext: 7

Ci=¢;/' mod 11 =16mod 11 =5mod 11
Cr=([Pxe)mod 11 =(7%x4096) mod 11 =6 mod 11
Ciphertext: (5, 6)

Bob receives the ciphertexts (5 and 6) and calculates the
plaintext.

[Cr x (C;H 1 Tmod 11=6 % (5%) ' mod 11=6 x3mod 11 =7 mod 11

Plaintext: 7
10.45

i 10.4.3 Continued

Example 10. 11

Instead of using P = [C, x (C,%) ~1] mod p for decryption, we can
avoid the calculation of multiplicative iInverse and use

P=[C, x C,P17] mod p (see Fermat’s little theorem in Chapter
9). In Example 10.10, we can calculate P = [6 x 5 %17173] mod 11
=7 mod 11.

‘ Note I

For the ElIGamal cryptosystem, p must be at least 300 digits
and r must be new for each encipherment.

10.46

10.4.3 Continued
Example 10. 12

Bob uses a random integer of 512 bits. The integer p is a 155-digit
number (the ideal is 300 digits). Bob then chooses e,, d, and
calculates e,, as shown below:

p = 115348992725616762449253137170143317404900945326098349598143469219
056898698622645932129754737871895144368891765264730936159299937280
61165964347353440008577

€1 = 2

d= 1007

e, = 078864130430091895087668569380977390438800628873376876100220622332
5545070741561892123183177046101416733601508841329408572485377031358
2066010072558707455

10.47

10.4.3 Continued
Example 10. 10

Alice has the plaintext P = 3200 to send to Bob. She chooses
r = 545131, calculates C1 and C2, and sends them to Bob.

P= 3200
r= 545131
C;= 887297069383528471022570471492275663120260067256562125018188351429

417223599712681114105363661705173051581533189165400973736355080295
73678856906061915288 1

G, = 70845433304892994457701601238079499956743602183619244696177450692 1
244696155165800779455593080345889614402408599525919579209721628879

6813505827795664302950

Bob calculates the plaintext P = C, x ((C,)%)~! mod p = 3200 mod p.

P= 3200

10.48

10-5 ELLIPTIC CURVE CRYPTOSYSTEMS

Although RSA and ElGamal are secure asymmetric-
key cryptosystems, their security comes with a price,
their large keys. Researchers have looked for
alternatives that give the same level of security with
smaller key sizes. One of these promising alternatives
IS the elliptic curve cryptosystem (ECC).

Topics discussed in this section:

10.5.1 Elliptic Curves over Real Numbers

10.5.2 Elliptic Curves over GF(p)

10.5.3 Elliptic Curves over GF(2")

10.5.4 Elliptic Curve Cryptography Simulating EIGamal

10.49

‘AL 10.5.1 Elliptic Curves over Real Numbers

The general equation for an elliptic curve is

}-’2 + D xy+ byy = x3 + ale + X + a3

Elliptic curves over real numbers use a special class of
elliptic curves of the form

v =x> +ax + b

10.50

Example 10. 13

Figure 10.12 shows two elliptic curves with equations y? = x3 — 4x
and y? = x3 — 1. Both are nonsingular. However, the first has three
real roots (x = —2, x = 0, and x = 2), but the second has only one
real root (x = 1) and two imaginary ones.

Figure 10.12 Two elliptic curves over a real field

44 44

3L 31

2+ 24+

1L yz_x3—4x| L P2=x3-1 I
—% —— o S —
2= A\ 4 6 3 PN 2 4 6 s

L 7L

3L 3L

44 4+

a. Three real roots b. One real and two imaginary roots
10.51

i 10.5.1 Continued

Figure 10.13 Three adding cases in an elliptic curve

y
A
P

a. (R=P+Q) b.(R=P+P) c. (O=P+ (- P))

10.52

i 10.5.1 Continued

1 A= =y /(p—x)
: 2
X3= A" =X — X y3=A(X] —Xx3) =

A= (Bxy? +a)/(2yy)

)
X3 = A" =X — X V3 =A (X —x3) -y

3. The intercepting point Is at infinity; a point O as the
point at infinity or zero point, which Is the additive
identity of the group.

10.53

i 10.5.2 Elliptic Curves over GF(p)

Finding an Inverse

The inverse of a point (X, y) Is (X, —y), where —y Is the
additive inverse of y. For example, if p = 13, the inverse of
(4, 2) i1s (4, 11).

Finding Points on the Curve

Algorithm 10.12 shows the pseudocode for finding the
points on the curve Ep(a, b).

10.54

10.5.2 Continued

Algorithm 10.12 Pseudocode for finding points on an elliptic curve

ellipticCurve_points (p, a, b) /1 p 1s the modulus
{
x<0
while (x < p)
{
W (_x?’ +ax+ b) mod p /I w1s)-‘2
it (w is a perfect square in Z,,) output (x, Jw) (x, = Jw)
xXée—x+1
{
}

10.55

Example 10. 14

The equation is y? = x3 + x + 1 and the calculation is done modulo
13.

Figure 10.14 Points on an elliptic curve over GF(p)

Y
12I——I———I—————I——#————T——ﬁ ————— SRR
oo
10 F-f -t I i et i
OF-®-— - SRR
e T e S S ®
[

P = _p —> 6 *"I”””l”f”l*”"*i”%”l”‘”l”*

5F--i-a--1--r--r-mm-t-- Te-r--r-a--®
7P
3 -ttt |
Rl e e e S EEE Dl SR L 2
IT——. ﬂ——+—-'r-1‘——:——%——.: ————————
ol e 5

012345678 9101112

Points Graph

10.56

10.5.2 Continued

Example 10. 15

Let us add two points in Example 10.14, R = P + Q, where
P=(4,2)and Q = (10, 6).

a. A=(06-2)x(10-4)'*mod13=4x6"1tmod 13 =5 mod 13.

b. x=(5%-4-10) mod 13 =11 mod 13.

c. y=[5(4-11) - 2] mod 13 =2 mod 13.

d. R=(11, 2), which is a point on the curve in Example 10.14.

10.57

i 10.5.3 Elliptic Curves over GF(2")

To define an elliptic curve over GF(2"), one needs to
change the cubic equation. The common equation is

Finding Inverses
If P=(X,y), then —P= (X, X +).

Finding Points on the Curve
We can write an algorithm to find the points on the curve
using generators for polynomials discussed in Chapter 7..

10.58

i 10.5.3 Continued

Finding Inverses
If P=(X,Yy), then =P = (X, X +Y).

Finding Points on the Curve

We can write an algorithm to find the points on the curve
using generators for polynomials discussed in Chapter 7.
This algorithm is left as an exercise. Following Is a very
trivial example.

10.59

10.5.3 Continued

Example 10. 16

We choose GF(23) with elements {0, 1, g, g%, g°, g% ¢° g°} using the
irreducible polynomial of f(x) = x3 + x + 1, which means that

ge+g+1=0o0rg®=g+ 1. Other powers of g can be calculated
accordingly. The following shows the values of the g’s.

0 000 {g3:{g+ 1 011
1 001 o=+ 110
g 010 g5=g2+g+l 111
g 100 =241 101

10.60

10.5.3 Continued

SEnCHINGE Continued

Using the elliptic curve y? + xy = x® + g3x? + 1, with a = g° and
b = 1, we can find the points on this curve, as shown in Figure
10.15..

Figure 10.15 Points on an elliptic curve over GF(2n)

P P i
P =-P—>| (0,1) ol R - -r--roo--io
E - @-----i-- -
2 I
(g, 1) g: oot
(&, 8) 20 O T
@) gl e e
1 @------- ¢ ------¢
€, 9 o LT
—— 01 g8 8 g g g

Graph
10.61

i 10.5.3 Continued

Adding Two Points
LIEP =X, Y) Q=X Y5), Q#—P and Q # P, then R = (X3, Y5)
= P+ Q can be found as

A= (h+y)/ (x+x))

=AM HA+X +X+a y3=A(X]+x3)+ X3+
3 1 2 3 I 3 37T

IfQ=P,thenR =P + P (or R =2P) can be found as

A= x1+v/x

=AM+ A+a vi=x17+ A+ 1) x5

10.62

i 10.5.3 Continued

Example 10. 17

Letus find R=P + Q, where P=(0, 1) and Q = (g4, 1).
We have 4 =0 and R = (g°, g*).

Example 10. 18

Let us find R = 2P, where P = (g%, 1). We have 4 = g? + 1/¢?
=g°+g>=g+landR=(¢° 0.

10.63

10.64

10.5.4 ECC Simulating EIGamal

Figure 10.16 ElGamal cryptosystem using the elliptic curve

Note:
Operations such as addition and multiplication Bob
are over an elliptic curve group. g

Alice
f

e ——————

r (e1, ¢y, Ep)

Public key: (e}, e;, E,)

Ciphertext: (Cq, C,)

P — C1=r><el _*I }_

C2=P+F>< 62

Encryption

Key generation

- Select E, (a, b)

Select e; =(xy, ¥;)

Select d

Calculate e, =(x,, 1)) =d x ¢;

d

i

—>| P=C,—(@xCy |—>P

Decryption

i 10.5.4 Continued

Generating Public and Private Keys
E(a,b) ex,y) d e,(Xz, ¥o) = d x e4(Xy, ¥y)

Encryption C,=rxe, C,=P+rXxe,
Decryption
P=C, — dxCy) The minus sign here means adding with the inverse.

‘ Note I

The security of ECC depends on the difficulty of
solving the elliptic curve logarithm problem.

10.65

10.5.4 Continued

Example 10. 19

Here Is a very trivial example of encipherment using an elliptic
curve over GF(p).

Bob selects E4(2, 3) as the elliptic curve over GF(p).

Bob selects e, = (2, 22) and d = 4.

Bob calculates e, = (13, 45), wheree, =d x e,.

Bob publicly announces the tuple (E, ey, &,).

Alice wants to send the plaintext P = (24, 26) to Bob. She selects
r=2.

AR

10.66

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66

