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Chapter 10

Asymmetric-Key
Cryptography

10.1



Asymmetric key cryptography uses two separate keys: one
private and one public.

10.1.1  Keys

Figure 10.1  Locking and unlocking in asymmetric-key cryptosystem
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10.1.2  General Idea

Figure 10.2  General idea of asymmetric-key cryptosystem
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Plaintext/Ciphertext
Unlike in symmetric-key cryptography, plaintext and
ciphertext are treated as integers in asymmetric-key
cryptography.

10.1.2  Continued

C = f (Kpublic , P) P = g(Kprivate , C)

Encryption/Decryption
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There is a very important fact that is sometimes
misunderstood: The advent of asymmetric-key
cryptography does not eliminate the need for symmetric-
key cryptography.

10.1.3  Need for Both

10.5



The main idea behind asymmetric-key cryptography is the
concept of the trapdoor one-way function.

10.1.4  Trapdoor One-Way Function

Functions

Figure 10.3  A function as rule mapping a domain to a range
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Trapdoor One-Way Function (TOWF)

10.1.4  Continued

One-Way Function (OWF)

1. f is easy to compute.
2. f −1 is difficult to compute.

3. Given y and a trapdoor, x can be
computed easily.
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10.1.4  Continued

Example 10. 1

Example 10. 2

When n is large, n = p × q is a one-way function. Given p and
q , it is always easy to calculate n ; given n, it is very difficult to
compute p and q. This is the factorization problem.

When n is large, the function y = xk mod n is a trapdoor one-
way function. Given x, k, and n, it is easy to calculate y. Given
y, k, and n, it is very difficult to calculate x. This is the discrete
logarithm problem. However, if we know the trapdoor, k′ such
that k × k ′ = 1 mod φ(n), we can use x = yk′ mod n to find x.
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10.1.5  Knapsack Cryptosystem

Definition
a = [a1, a2, …, ak ] and   x = [x1, x2, …, xk]. 

Given a and x, it is easy to calculate s. However, given s
and a it is difficult to find x.

Superincreasing Tuple

ai ≥ a1 + a2 + … + ai−1
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10.1.5  Continued
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10.1.5  Continued

Example 10. 3

As a very trivial example, assume that a = [17, 25, 46, 94,
201,400] and s = 272 are given. Table 10.1 shows how the
tuple x is found using inv_knapsackSum routine in Algorithm
10.1. In this case x = [0, 1, 1, 0, 1, 0], which means that 25, 46,
and 201 are in the knapsack.
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Secret Communication with Knapsacks.

10.1.5  Continued

Figure 10.4  Secret communication with knapsack cryptosystem
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10.1.5  Continued
Example 10. 4

This is a trivial (very insecure) example just to show the
procedure.
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10-2   RSA CRYPTOSYSTEM

The most common public-key algorithm is the RSA
cryptosystem, named for its inventors (Rivest, Shamir,
and Adleman).

10.2.1 Introduction
10.2.2 Procedure
10.2.3 Some Trivial Examples
10.2.4 Attacks on RSA
10.2.5 Recommendations
10.2.6 Optimal Asymmetric Encryption Padding (OAEP)
10.2.7 Applications

Topics discussed in this section:
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10.2.1  Introduction

Figure 10.5  Complexity of operations in RSA
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10.2.2  Procedure

Figure 10.6  Encryption, decryption, and key generation in RSA

10.16



Two Algebraic Structures

10.2.2  Continued

Encryption/Decryption Ring: R = <Zn , +, × >

Key-Generation Group: G = <Z φ(n)∗, × >
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10.2.2  Continued
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Encryption

10.2.2  Continued
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Decryption

10.2.2  Continued
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Proof of RSA

10.2.2  Continued
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10.2.3  Some Trivial Examples
Example 10. 5

Bob chooses 7 and 11 as p and q and calculates n = 77. The
value of φ(n) = (7 − 1)(11 − 1) or 60. Now he chooses two
exponents, e and d, from Z60∗. If he chooses e to be 13, then d
is 37. Note that e × d mod 60 = 1 (they are inverses of each
Now imagine that Alice wants to send the plaintext 5 to Bob.
She uses the public exponent 13 to encrypt 5.

Bob receives the ciphertext 26 and uses the private key 37 to
decipher the ciphertext:
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10.2.3  Some Trivial Examples
Example 10. 6

Bob receives the ciphertext 28 and uses his private key 37 to
decipher the ciphertext:

Now assume that another person, John, wants to
send a message to Bob. John can use the same
public key announced by Bob (probably on his
website), 13; John’s plaintext is 63. John calculates
the following:
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10.2.3  Some Trivial Examples
Example 10. 7

Suppose Ted wants to send the message “NO” to
Jennifer. He changes each character to a number
(from 00 to 25), with each character coded as two
digits. He then concatenates the two coded
characters and gets a four-digit number. The plaintext
is 1314. Figure 10.7 shows the process.

Jennifer creates a pair of keys for herself. She
chooses p = 397 and q = 401. She calculates
n = 159197. She then calculates φ(n) = 158400. She
then chooses e = 343 and d = 12007. Show how Ted
can send a message to Jennifer if he knows e and n.
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10.2.3  Continued

Figure 10.7  Encryption and decryption in Example 10.7
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10.2.4  Attacks on RSA

Figure 10.8  Taxonomy of potential attacks on RSA
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10.2.6 OAEP
Figure 10.9  Optimal asymmetric encryption padding (OAEP)
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10.2.6  Continued
Example 10. 8

Here is a more realistic example. We choose a 512-bit p
and q, calculate n and φ(n), then choose e and test for
relative primeness with φ(n). We then calculate d.
Finally, we show the results of encryption and
decryption. The integer p is a 159-digit number.
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10.2.6  Continued
Example 10. 8

The modulus n = p × q. It has 309 digits.

Continued

φ(n) = (p − 1)(q − 1) has 309 digits.
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10.2.6  Continued
Example 10. 8

Bob chooses e = 35535 (the ideal is 65537) and tests it to
make sure it is relatively prime with φ(n). He then finds
the inverse of e modulo φ(n) and calls it d.

Continued
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10.2.6  Continued
Example 10. 8 Continued

Alice wants to send the message “THIS IS A TEST”,
which can be changed to a numeric value using the
00−26 encoding scheme (26 is the space character).

The ciphertext calculated by Alice is C = Pe, which is
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10.2.6  Continued
Example 10. 8 Continued

Bob can recover the plaintext from the ciphertext using
P = Cd, which is

The recovered plaintext is “THIS IS A TEST” after
decoding.
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10-3   RABIN CRYPTOSYSTEM

The Rabin cryptosystem can be thought of as an RSA
cryptosystem in which the value of e and d are fixed.
The encryption is C ≡ P2 (mod n) and the decryption is
P ≡ C1/2 (mod n).

10.3.1 Procedure
10.3.2 Security of the Rabin System

Topics discussed in this section:
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10-3   Continued

Figure 10.10  Rabin cryptosystem
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10.3.1  Procedure

Key Generation
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Encryption

10.3.1  Continued
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Decryption
10.3.1  Continued

The Rabin cryptosystem is not deterministic: 
Decryption creates four plaintexts.

Note
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10.3.1  Continued
Example 10. 9

Here is a very trivial example to show the idea.

1. Bob selects p = 23 and q = 7. Note that both are

congruent to 3 mod 4.

2. Bob calculates n = p × q = 161.

3. Bob announces n publicly; he keeps p and q private.

4. Alice wants to send the plaintext P = 24. Note that 161 and 24 

are relatively prime; 24 is in Z161*. She calculates C = 242 = 93 

mod 161, and sends the ciphertext 93 to Bob.

10.38



10.3.1  Continued
Example 10. 9

5. Bob receives 93 and calculates four values:
a1 = +(93 (23+1)/4) mod 23 = 1 mod 23
a2 = −(93 (23+1)/4) mod 23 = 22 mod 23
b1 = +(93 (7+1)/4) mod 7 = 4 mod 7
b2 = −(93 (7+1)/4) mod 7 = 3 mod 7

6. Bob takes four possible answers, (a1, b1), (a1, b2), (a2, b1), and 
(a2, b2), and uses the Chinese remainder theorem to find four 
possible plaintexts: 116, 24, 137, and 45. Note that only the 
second answer is Alice’s plaintext.
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10-4   ELGAMAL CRYPTOSYSTEM

Besides RSA and Rabin, another public-key
cryptosystem is ElGamal. ElGamal is based on the
discrete logarithm problem discussed in Chapter 9.

10.4.1 ElGamal Cryptosystem
10.4.2 Procedure
10.4.3 Proof
10.4.4 Analysis
10.4.5 Security of ElGamal
10.4.6 Application

Topics discussed in this section:
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10.4.2  Procedure

Figure 10.11  Key generation, encryption, and decryption in ElGamal
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Key Generation

10.4.2  Continued
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10.4.2  Continued
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10.4.2  Continued

The bit-operation complexity of encryption or 
decryption in ElGamal cryptosystem is polynomial.

Note
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10.4.3  Continued
Example 10. 10

Here is a trivial example. Bob chooses p = 11 and e1 = 2.
and d = 3 e2 = e1

d = 8. So the public keys are (2, 8, 11)
and the private key is 3. Alice chooses r = 4 and calculates
C1 and C2 for the plaintext 7.

Bob receives the ciphertexts (5 and 6) and calculates the
plaintext.
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10.4.3  Continued

Example 10. 11

Instead of using P = [C2 × (C1
d) −1] mod p for decryption, we can

avoid the calculation of multiplicative inverse and use
P = [C2 × C1

p−1−d] mod p (see Fermat’s little theorem in Chapter
9). In Example 10.10, we can calculate P = [6 × 5 11−1−3] mod 11
= 7 mod 11.

For the ElGamal cryptosystem, p must be at least 300 digits 
and r must be new for each encipherment.

Note
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10.4.3  Continued
Example 10. 12

Bob uses a random integer of 512 bits. The integer p is a 155-digit
number (the ideal is 300 digits). Bob then chooses e1, d, and
calculates e2, as shown below:

10.47



10.4.3  Continued
Example 10. 10

Alice has the plaintext P = 3200 to send to Bob. She chooses
r = 545131, calculates C1 and C2, and sends them to Bob.

Bob calculates the plaintext P = C2 × ((C1)d)−1 mod p = 3200 mod p.
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10-5   ELLIPTIC CURVE CRYPTOSYSTEMS

Although RSA and ElGamal are secure asymmetric-
key cryptosystems, their security comes with a price,
their large keys. Researchers have looked for
alternatives that give the same level of security with
smaller key sizes. One of these promising alternatives
is the elliptic curve cryptosystem (ECC).

10.5.1 Elliptic Curves over Real Numbers
10.5.2 Elliptic Curves over GF( p)
10.5.3 Elliptic Curves over GF(2n)
10.5.4 Elliptic Curve Cryptography Simulating ElGamal

Topics discussed in this section:
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The general equation for an elliptic curve is

10.5.1  Elliptic Curves over Real Numbers

Elliptic curves over real numbers use a special class of
elliptic curves of the form
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Example 10. 13
Figure 10.12 shows two elliptic curves with equations y2 = x3 − 4x
and y2 = x3 − 1. Both are nonsingular. However, the first has three
real roots (x = −2, x = 0, and x = 2), but the second has only one
real root (x = 1) and two imaginary ones.

Figure 10.12  Two elliptic curves over a real field
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10.5.1  Continued

Figure 10.13  Three adding cases in an elliptic curve
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1.

10.5.1  Continued

2.

3. The intercepting point is at infinity; a point O as the
point at infinity or zero point, which is the additive
identity of the group.
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10.5.2  Elliptic Curves over GF( p)

Finding an Inverse
The inverse of a point (x, y) is (x, −y), where −y is the
additive inverse of y. For example, if p = 13, the inverse of
(4, 2) is (4, 11).

Finding Points on the Curve
Algorithm 10.12 shows the pseudocode for finding the
points on the curve Ep(a, b).
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10.5.2  Continued
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Example 10. 14
The equation is y2 = x3 + x + 1 and the calculation is done modulo
13.

Figure 10.14  Points on an elliptic curve over GF(p)
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10.5.2  Continued

Example 10. 15
Let us add two points in Example 10.14, R = P + Q, where
P = (4, 2) and Q = (10, 6).
a. λ = (6 − 2) × (10 − 4)−1 mod 13 = 4 × 6−1 mod 13 = 5 mod 13.
b. x = (52 − 4 −10) mod 13 = 11 mod 13.
c. y = [5 (4 −11) − 2] mod 13 = 2 mod 13.
d. R = (11, 2), which is a point on the curve in Example 10.14.
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To define an elliptic curve over GF(2n), one needs to
change the cubic equation. The common equation is

10.5.3  Elliptic Curves over GF(2n)

Finding Inverses
If P = (x, y), then −P = (x, x + y).

Finding Points on the Curve
We can write an algorithm to find the points on the curve
using generators for polynomials discussed in Chapter 7..
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Finding Inverses
If P = (x, y), then −P = (x, x + y).

10.5.3  Continued

Finding Points on the Curve
We can write an algorithm to find the points on the curve
using generators for polynomials discussed in Chapter 7.
This algorithm is left as an exercise. Following is a very
trivial example.
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10.5.3  Continued

Example 10. 16

We choose GF(23) with elements {0, 1, g, g2, g3, g4, g5, g6} using the
irreducible polynomial of f(x) = x3 + x + 1, which means that
g3 + g + 1 = 0 or g3 = g + 1. Other powers of g can be calculated
accordingly. The following shows the values of the g’s.
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10.5.3  Continued

Example 10. 16

Using the elliptic curve y2 + xy = x3 + g3x2 + 1, with a = g3 and
b = 1, we can find the points on this curve, as shown in Figure
10.15..

Continued

Figure 10.15  Points on an elliptic curve over GF(2n)
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Adding Two Points
1. If P = (x1, y1), Q = (x2, y2), Q ≠ −P, and Q ≠ P, then R = (x3, y3)

= P + Q can be found as

10.5.3  Continued

If Q = P, then R = P + P (or R = 2P) can be found as
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10.5.3  Continued

Example 10. 17

Let us find R = P + Q, where P = (0, 1) and Q = (g2, 1).
We have λ = 0 and R = (g5, g4).

Example 10. 18
Let us find R = 2P, where P = (g2, 1). We have λ = g2 + 1/g2

= g2 + g5 = g + 1 and R = (g6, g5).
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10.5.4  ECC Simulating ElGamal

Figure 10.16  ElGamal cryptosystem using the elliptic curve

10.64



Generating Public and Private Keys
E(a, b) e1(x1, y1) d e2(x2, y2) = d × e1(x1, y1)

10.5.4  Continued

Encryption

Decryption

The security of ECC depends on the difficulty of 
solving the elliptic curve logarithm problem.

Note
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10.5.4  Continued

Example 10. 19

Here is a very trivial example of encipherment using an elliptic
curve over GF(p).

1. Bob selects E67(2, 3) as the elliptic curve over GF(p).
2. Bob selects e1 = (2, 22) and d = 4.
3. Bob calculates e2 = (13, 45), where e2 = d × e1.
4. Bob publicly announces the tuple (E, e1, e2).
5. Alice wants to send the plaintext P = (24, 26) to Bob. She selects

r = 2.

10.66


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66

