
M & W 12:00 – 01:15 p.m. thru Discord CS447-1 Spring 2022

CS447-1 : Networks and Data Communications (sec. 01)
Programming Assignment #01

Total Points: 150

Assigned Date : Wednesday, February 02, 2022

Due Date : Wednesday, February 23, 2022 @ 11:59:59 a.m.

Overview

Your first programming assignment this semester is to implement an elementary network news application using
the socket API. This assignment is a multi-objective assignment and is fairly loaded. Moreover, your PR02 is
expected to be an extension of PR01. Thus, start early. The assignment objectives are:

a. to start developing socket programming skills and knowledge;
b. to reinforce the concept of “protocol” using hands-on programming;
c. to refresh multi-threading, system calls, and other systems programming concepts;
d. to learn how to implement protocols according to their RFC specifications; and
e. to gain experience in developing application layer network programs.

Take note that the implementation language is fixed to C/C++. Here the back story.

Back Story

As it turns out, news doesn’t travel fast enough for Captain Haddock when he is on his routine sea voyages. He
just found out that there was a recent public online auction in which a rare mini replica of the Unicorn was sold. He
reaches out to his trusty computer scientist friend Mik for some advice. “I think I can build you a network news service,
Haddock”, said Mik. He promises Haddock that this new news solution will provide reliable delivery and will even
allow all of his crew-mates to also retrieve articles they are interested in without a hitch.

Technical Requirements

1. You will need to write a client-server application to support Mik’s network news system.
2. Your reader → server interaction as well as the server → reader interaction should follow the NNTP

protocol
3. Your server implementation must support the following capabilities and, at minimum, the listed set of

associated commands:

• READER – GROUP, LISTGROUP, NEXT, ARTICLE, and DATE
• HDR – HDR (first form), and LIST HEADERS
• LIST – ACTIVE and NEWSGROUP

– The LIST command accepts wildmats syntax for arguments (see RFC Sec. 4.1) Thus, it is highly
recommended to incorporate regex in your implementation (instead of trying to parse manually).

last updated: 01/28/22 @ 10:28am 1

M & W 12:00 – 01:15 p.m. thru Discord CS447-1 Spring 2022

4. Additionally, the following basic commands should be supported: CAPABILITIES, HELP, and QUIT. A
description of each of these commands along with examples can be found in the NNTP RFC https:
//tools.ietf.org/html/rfc3977.

5. Closely related to the NNTP commands are the corresponding reply codes. Read Section 3.2 of the NNTP
RFC, select appropriate reply codes, and implement them. Based on Graders’ preliminary testing, they are
expecting you’d use at least 10-15 reply codes in your implementations. Explain your reply code selection
and the justification in your report.

6. Articles at the server are immutable, meaning, client/reader gets a copy each time an article is fetched.
7. More than one reader should be capable of reading news articles without interrupting any other reader. As

such, your server needs to be multi-threaded.
8. All interactions between the readers ↔ server should run over TCP.

Logistics

1. IP addresses/hostnames and port numbers should not be hard coded.

• Your server executable will accept the necessary listening port from a configuration file† (e.g. server.conf)
present in the same working directory. For example:

./server server.conf

#server.conf

NNTP_PORT=

• Your client executable also follows a similar pattern and accepts the server socket address from a
configuration file (e.g. client.conf)

./client client.conf

#client.conf

SERVER_IP=
SERVER_PORT=

2. Client(s) and server should be able to run on two separate end systems but still communicate with each
other. Use the zone server zone.cs.siue.edu to spawn multiple containers to test simulated over-the-network
communication behavior. At minimum, at least two concurrent readers should be able to read articles without
any interruption or interference.

3. All clients should exit gracefully. Server process is permitted to be forcefully killed.
4. Use the following article management strategy:

• All articles are stored in a folder named db under server’s present working directory ($pwd).
• Each NEWSGROUP has it’s own folder inside the db folder. ARTICLES are stored under these sub folders.
• All ARTICLES have numeric file names. For implementation simplicity, ARTICLES can be stored as .txt

files. (NOTE: This might change in PR02 and beyond).
– Each ARTICLE has a HEAD separating the BODY by a single blank line (i.e. CRLF).

• A sample db folder will be provided to your (thru Discord) for testing purposes.

5. Here’s a sample article.txt file stored at the server.

Answer

Feed: Wired | Science
Title: To Learn More Quickly, Brain Cells Break Their DNA

†Note: A configuration file is simply a text file with a .conf extension.

last updated: 01/28/22 @ 10:28am 2

https://tools.ietf.org/html/rfc3977
https://tools.ietf.org/html/rfc3977

M & W 12:00 – 01:15 p.m. thru Discord CS447-1 Spring 2022

Author: Jordana Cepelewicz
Date: Sat, 05 Feb 2022 07:00:00 -0500
Link: https://www.wired.com/story/to-learn-more-quickly-brain-cells-break-their-dna

DNA double-strand breaks are associated with cancer and aging. A new study shows
neurons can use them to quickly express genes related to learning and memory.

6. Print all reply codes, on all interactions, to the standard output (only).
7. Minimum Testing Plan: At the end of your implementation, you should be able to:

• Compile and run your code on a typical Linux machine.
• Run your server program(s) first.
• Run several clients concurrently to connect to the server and be able make independent progress without

interference from each other to read articles.
• Exit the client(s) gracefully.

Instructions

• Start early!!. This is a fairly loaded assignment.
• Take backups of your code often!!.
• Follow a good coding standard. Use one of Google’s coding standard found here https://google.github.
io/styleguide/, if you don’t already follow one.

• Your code must compile and run on a typical Linux setup. Neither the instructor nor his graders will use (or
entertain the use of) any IDE to test your implementation. Be sure to test command line compilation and run
before submission.

• Implementation language must be C/C++.
• Absolutely do not include executables, folders created by your programs, hidden files, version control

repositories, or any irrelevant files in this tarball. All project relevant file formatting standards (PDF, README,
.txt, .tar.gz) will be strictly monitored and are subject to penalties.

• The due date of this assignment is Wednesday, February 23, 2022 @ 11:59:59 a.m. . A Moodle dropbox will
be opened for submission.

• Based on past student experience, multi-threading is not as obvious as it may look. I suggest you to first get a
single-threaded version working correctly and then think about extending it to multi-threading.

• This assignment can be fully developed using the socket API of your programming language and basic I/O
API. Use of other packages/libraries without the instructors permission is not permitted.

Deliverables

A complete solution comprises of:

• A short report of the design and implementation of your system. The report should be PDF format. At a
minimum, your report should include the following sections:

– Introduction: Your objective and what you hope to gain from the assignment.
– Overall design, specific design choices, and reply codes used.
– The output of a sample run. Include plenty screenshots wherever applicable. In situations were we can’t

verify expected behavior, your screenshots maybe considered for partial credit.
– Summary and Issues encountered. What you were able to achieve from your own objectives (from the

introduction) as well as project specifications. Make sure to explicitly list functionality you failed to
implement (or buggy).

• A compressed tarball that contains:

last updated: 01/28/22 @ 10:28am 3

https://google.github.io/styleguide/
https://google.github.io/styleguide/

M & W 12:00 – 01:15 p.m. thru Discord CS447-1 Spring 2022

– a directory containing (only) your source code and config files. Do not include executables, folders
created by your programs, or any other files not specifically listed here as required.

– A short README file with compilation and run instructions.
– A makefile (mandatory) to compile your code especially if it involves compiling multiple executables

with flag options. Python based submissions should use the makefile to echo the content of your README
file.

To create a compressed tarball of the directory source, use the following command:
tar -zcvf siue-id-pr1.tar.gz source/.
e.g. tar -zcvf tgamage-pr1.tar.gz PR01/

Collaborating on ideas or answering each other’s questions is always encouraged. Most times, I find that you learn
a lot from your peers. However, do not share/copy/duplicate code from others, including online sources. If you
find a useful article or a source code online, firstly cite it in your report, and secondly, get the idea from it and
do your own implementation. Absolutely do not direclty copy-paste code from online sources. The exercise is
meant for you to learn network programming, not to test your googling abilities. The instructor actively uses MOSS
http://theory.stanford.edu/~aiken/moss/ to check for software similarity. Issues related to academic integrity
and plagiarism have ZERO tolerance.

Some Useful Resources

• Linux Man pages – found in all Linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic network programming

for C/C++ https://beej.us/guide/bgnet/
• Linux Socket Programming In C++ – https://tldp.org/LDP/LG/issue74/tougher.html
• The Linux HOWTO Page on Socket Programming – https://www.linuxhowtos.org/C_C++/socket.htm
• Network News Transfer Protocol (NNTP) RFC #3977 https://tools.ietf.org/html/rfc3977

last updated: 01/28/22 @ 10:28am 4

http://theory.stanford.edu/~aiken/moss/
https://beej.us/guide/bgnet/
https://tldp.org/LDP/LG/issue74/tougher.html
https://www.linuxhowtos.org/C_C++/socket.htm
https://tools.ietf.org/html/rfc3977

