
7.1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 7

Advanced Encryption Standard
(AES)

7.2

Objectives

❏ To review a short history of AES

❏ To define the basic structure of AES

❏ To define the transformations used by AES

❏ To define the key expansion process

❏ To discuss different implementations

Chapter 7

7.3

7-1 INTRODUCTION

The Advanced Encryption Standard (AES) is a
symmetric-key block cipher published by the National
Institute of Standards and Technology (NIST) in
December 2001.

7.1.1 History
7.1.2 Criteria
7.1.3 Rounds
7.1.4 Data Units
7.1.5 Structure of Each Round

Topics discussed in this section:

7.4

7.1.1 History.

In February 2001, NIST announced that a draft of the
Federal Information Processing Standard (FIPS) was
available for public review and comment. Finally, AES
was published as FIPS 197 in the Federal Register in
December 2001.

7.5

7.1.2 Criteria

The criteria defined by NIST for selecting AES fall
into three areas:
1. Security
2. Cost
3. Implementation.

7.6

7.1.3 Rounds.

AES is a non-Feistel cipher that encrypts and decrypts
a data block of 128 bits. It uses 10, 12, or 14 rounds.
The key size, which can be 128, 192, or 256 bits,
depends on the number of rounds.

AES has defined three versions, with 10, 12,
and 14 rounds.

Each version uses a different cipher key size
(128, 192, or 256), but the round keys are

always 128 bits.

Note

7.7

7.1.3 Continue

Figure 7.1 General design of AES encryption cipher

7.8

7.1.4 Data Units.
Figure 7.2 Data units used in AES

7.9

7.1.4 Continue

Figure 7.3 Block-to-state and state-to-block transformation

7.10

7.1.4 Continue
Example 7.1

Figure 7.4 Changing plaintext to state

Continue

7.11

7.1.5 Structure of Each Round
Figure 7.5 Structure of each round at the encryption site

7.12

7-2 TRANSFORMATIONS

To provide security, AES uses four types of
transformations: substitution, permutation, mixing,
and key-adding.

7.2.1 Substitution
7.2.2 Permutation
7.2.3 Mixing
7.2.4 Key Adding

Topics discussed in this section:

7.13

7.2.1 Substitution

AES, like DES, uses substitution. AES uses two
invertible transformations.

SubBytes
The first transformation, SubBytes, is used at the
encryption site. To substitute a byte, we interpret the byte
as two hexadecimal digits.

The SubBytes operation involves 16
independent byte-to-byte transformations.

Note

7.14

7.2.1 Continue

Figure 7.6 SubBytes transformation

7.15

7.2.1 Continue

7.16

7.2.1 Continue

7.17

7.2.1 Continue

InvSubBytes

7.18

7.2.1 Continue

InvSubBytes (Continued)

7.19

7.2.1 Continue
Example 7.2

Figure 7.7 shows how a state is transformed using the
SubBytes transformation. The figure also shows that the
InvSubBytes transformation creates the original one. Note
that if the two bytes have the same values, their
transformation is also the same.

Figure 7.7 SubBytes transformation for Example 7.2

7.20

7.2.1 Continue

Transformation Using the GF(28) Field
AES also defines the transformation algebraically using
the GF(28) field with the irreducible polynomials
(x8 + x4 + x3+ x + 1), as shown in Figure 7.8.

The SubBytes and InvSubBytes
transformations are inverses of each other.

Note

7.21

7.2.1 Continue
Figure 7.8 SubBytes and InvSubBytes processes

7.22

7.2.1 Continue
Example 7.3

Let us show how the byte 0C is transformed to FE by subbyte
routine and transformed back to 0C by the invsubbyte
routine.

7.23

7.2.1 Continue

7.24

7.2.2 Permutation

Another transformation found in a round is shifting,
which permutes the bytes.
ShiftRows
In the encryption, the transformation is called ShiftRows.

Figure 7.9 ShiftRows transformation

7.25

InvShiftRows
In the decryption, the transformation is called
InvShiftRows and the shifting is to the right.

7.2.2 Continue

7.26

7.2.2 Continue
Example 7.4

Figure 7.10 shows how a state is transformed using ShiftRows
transformation. The figure also shows that InvShiftRows
transformation creates the original state.

Figure 7.10 ShiftRows transformation in Example 7.4

7.27

7.2.3 Mixing

We need an interbyte transformation that changes the
bits inside a byte, based on the bits inside the
neighboring bytes. We need to mix bytes to provide
diffusion at the bit level.

Figure 7.11 Mixing bytes using matrix multiplication

7.28

7.2.3 Continue

Figure 7.12 Constant matrices used by MixColumns and InvMixColumns

7.29

MixColumns
The MixColumns transformation operates at the column
level; it transforms each column of the state to a new
column.

7.2.3 Continue

Figure 7.13 MixColumns transformation

7.30

InvMixColumns
The InvMixColumns transformation is basically the same
as the MixColumns transformation.

7.2.3 Continue

The MixColumns and InvMixColumns
transformations are inverses of each other.

Note

7.31

7.2.3 Continue

7.32

7.2.3 Continue
Example 7.5

Figure 7.14 shows how a state is transformed using the
MixColumns transformation. The figure also shows that the
InvMixColumns transformation creates the original one.

Figure 7.14 The MixColumns transformation in Example 7.5

7.33

7.2.4 Key Adding

AddRoundKey
AddRoundKey proceeds one column at a time.
AddRoundKey adds a round key word with each state
column matrix; the operation in AddRoundKey is matrix
addition.

The AddRoundKey transformation is the
inverse of itself.

Note

7.34

7.2.4 Continue
Figure 7.15 AddRoundKey transformation

7.35

7-3 KEY EXPANSION

To create round keys for each round, AES uses a key-
expansion process. If the number of rounds is Nr , the
key-expansion routine creates Nr + 1 128-bit round
keys from one single 128-bit cipher key.

7.3.1 Key Expansion in AES-128
7.3.2 Key Expansion in AES-192 and AES-256
7.3.3 Key-Expansion Analysis

Topics discussed in this section:

7.36

7-3 Continued

7.37

7.3.1 Key Expansion in AES-128
Figure 7.16 Key expansion in AES

7.38

7.3.1 Continue

7.39

7.3.1 Continue

The key-expansion routine can either use the above
table when calculating the words or use the GF(28)
field to calculate the leftmost byte dynamically, as
shown below (prime is the irreducible polynomial):

7.40

7.3.1 Continue

7.41

7.3.1 Continue
Example 7.6

Table 7.5 shows how the keys for each round are calculated
assuming that the 128-bit cipher key agreed upon by Alice
and Bob is (24 75 A2 B3 34 75 56 88 31 E2 12 00 13 AA 54
87)16.

7.42

7.3.1 Continue
Example 7.7

Each round key in AES depends on the previous round key.
The dependency, however, is nonlinear because of SubWord
transformation. The addition of the round constants also
guarantees that each round key will be different from the
previous one.

Example 7.8

The two sets of round keys can be created from two cipher
keys that are different only in one bit.

7.43

7.3.1 Continue
Example 7.8 Continue

7.44

7.3.1 Continue
Example 7.9

The concept of weak keys, as we discussed for DES in
Chapter 6, does not apply to AES. Assume that all bits in the
cipher key are 0s. The following shows the words for some
rounds:

The words in the pre-round and the first round are all the
same. In the second round, the first word matches with the
third; the second word matches with the fourth. However,
after the second round the pattern disappears; every word is
different.

7.45

7.3.2 Key Expansion in AES-192 and AES-256

Key-expansion algorithms in the AES-192 and AES-256
versions are very similar to the key expansion algorithm in
AES-128, with the following differences:

7.46

7.3.3 Key-Expansion Analysis

The key-expansion mechanism in AES has been
designed to provide several features that thwart the
cryptanalyst.

7.47

7-4 CIPHERS

AES uses four types of transformations for encryption
and decryption. In the standard, the encryption
algorithm is referred to as the cipher and the
decryption algorithm as the inverse cipher.

7.4.1 Original Design
7.4.2 Alternative Design

Topics discussed in this section:

7.48

7.4.1 Original Design
Figure 7.17 Ciphers and inverse ciphers of the original design

7.49

Algorithm
The code for the AES-128 version of this design is shown
in Algorithm 7.6.

7.4.1 Continue

7.50

7.4.2 Alternative Design

Figure 7.18 Invertibility of SubBytes and ShiftRows combinations

7.51

7.4.2 Continue

Figure 7.19 Invertibility of MixColumns and AddRoundKey combination

7.52

7.4.2 Continue
Figure 7.20 Cipher and reverse cipher in alternate design

7.53

Changing Key-Expansion Algorithm
Instead of using InvRoundKey transformation in the
reverse cipher, the key-expansion algorithm can be
changed to create a different set of round keys for the
inverse cipher.

7.4.2 Continue

7.54

7-5 Examples

In this section, some examples of encryption/
decryption and key generation are given to emphasize
some points discussed in the two previous sections.

Example 7.10

The following shows the ciphertext block created from a
plaintext block using a randomly selected cipher key.

7.55

7-5 Continued
Example 7.10 Continued

7.56

7-5 Continued
Example 7.10 Continued

7.57

7-5 Continued
Example 7.10 Continued

7.58

7-5 Continued

Example 7.11

Figure 7.21 shows the state entries in one round, round 7, in
Example 7.10.

Figure 7.21 States in a single round

7.59

7-5 Continued

Example 7.12
One may be curious to see the result of encryption when the
plaintext is made of all 0s. Using the cipher key in Example
7.10 yields the ciphertext.

7.60

7-5 Continued

Example 7.13

Let us check the avalanche effect that we discussed in
Chapter 6. Let us change only one bit in the plaintext and
compare the results. We changed only one bit in the last byte.
The result clearly shows the effect of diffusion and confusion.
Changing a single bit in the plaintext has affected many bits
in the ciphertext.

7.61

7-5 Continued

Example 7.14

The following shows the effect of using a cipher key in which
all bits are 0s.

7.62

7-6 ANALYSIS OF AES

This section is a brief review of the three
characteristics of AES.

7.6.1 Security
7.6.2 Implementation
7.6.3 Simplicity and Cost

Topics discussed in this section:

7.63

7.6.1 Security

AES was designed after DES. Most of the known
attacks on DES were already tested on AES.

Brute-Force Attack
AES is definitely more secure than DES due to the
larger-size key.

Statistical Attacks
Numerous tests have failed to do statistical analysis of
the ciphertext.

Differential and Linear Attacks
There are no differential and linear attacks on AES as
yet.

7.64

7.6.1 Continue

Statistical Attacks
Numerous tests have failed to do statistical analysis of
the ciphertext.

Differential and Linear Attacks
There are no differential and linear attacks on AES as
yet.

7.65

7.6.2 Implementation

AES can be implemented in software, hardware, and
firmware. The implementation can use table lookup
process or routines that use a well-defined algebraic
structure.

7.66

7.6.3 Simplicity and Cost

The algorithms used in AES are so simple that they
can be easily implemented using cheap processors and
a minimum amount of memory.

