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Chapter 9: Basic Cryptography

• Classical Cryptography
• Public Key Cryptography
• Cryptographic Checksums
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Overview

• Classical Cryptography
– Cæsar cipher
– Vigènere cipher
– DES

• Public Key Cryptography
– Diffie-Hellman
– RSA

• Cryptographic Checksums
– HMAC
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Cryptosystem

• Quintuple (E, D, M, K, C)
– M set of plaintexts
– K set of keys
– C set of ciphertexts
– E set of encryption functions e: M × K → C
– D set of decryption functions d: C × K → M
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Example

• Example: Cæsar cipher
– M = { sequences of letters }
– K = { i | i is an integer and 0 ≤ i ≤ 25 }
– E = { Ek | k ∈ K and for all letters m,

Ek(m) = (m + k) mod 26 }
– D = { Dk | k ∈ K and for all letters c,

Dk(c) = (26 + c – k) mod 26 }
– C = M
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Attacks

• Opponent whose goal is to break cryptosystem is 
the adversary
– Assume adversary knows algorithm used, but not key

• Three types of attacks:
– ciphertext only: adversary has only ciphertext; goal is to 

find plaintext, possibly key
– known plaintext: adversary has ciphertext, 

corresponding plaintext; goal is to find key
– chosen plaintext: adversary may supply plaintexts and 

obtain corresponding ciphertext; goal is to find key
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Basis for Attacks

• Mathematical attacks
– Based on analysis of underlying mathematics

• Statistical attacks
– Make assumptions about the distribution of 

letters, pairs of letters (digrams), triplets of 
letters (trigrams), etc.

• Called models of the language
– Examine ciphertext, correlate properties with 

the assumptions.
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Classical Cryptography

• Sender, receiver share common key
– Keys may be the same, or trivial to derive from 

one another
– Sometimes called symmetric cryptography

• Two basic types
– Transposition ciphers
– Substitution ciphers
– Combinations are called product ciphers
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Transposition Cipher

• Rearrange letters in plaintext to produce 
ciphertext

• Example (Rail-Fence Cipher)
– Plaintext is HELLO WORLD
– Rearrange as

HLOOL
ELWRD

– Ciphertext is HLOOL ELWRD
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Attacking the Cipher

• Anagramming
– If 1-gram frequencies match English 

frequencies, but other n-gram frequencies do 
not, probably transposition

– Rearrange letters to form n-grams with highest 
frequencies
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Example

• Ciphertext: HLOOLELWRD
• Frequencies of 2-grams beginning with H

– HE   0.0305
– HO   0.0043
– HL, HW, HR, HD < 0.0010

• Frequencies of 2-grams ending in H
– WH  0.0026
– EH, LH, OH, RH, DH ≤ 0.0002

• Implies E follows H
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Example

• Arrange so the H and E are adjacent
HE
LL
OW
OR
LD

• Read off across, then down, to get original 
plaintext
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Substitution Ciphers

• Change characters in plaintext to produce 
ciphertext

• Example (Cæsar cipher)
– Plaintext is HELLO WORLD
– Change each letter to the third letter following 

it (X goes to A, Y to B, Z to C)
• Key is 3, usually written as letter ‘D’

– Ciphertext is KHOOR ZRUOG
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Attacking the Cipher

• Exhaustive search
– If the key space is small enough, try all possible 

keys until you find the right one
– Cæsar cipher has 26 possible keys

• Statistical analysis
– Compare to 1-gram model of English
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Statistical Attack

• Compute frequency of each letter in 
ciphertext:

G 0.1 H 0.1 K 0.1 O 0.3
R 0.2 U 0.1 Z 0.1

• Apply 1-gram model of English
– Frequency of characters (1-grams) in English is 

on next slide
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Character Frequencies

a 0.080 h 0.060 n 0.070 t 0.090

b 0.015 i 0.065 o 0.080 u 0.030

c 0.030 j 0.005 p 0.020 v 0.010

d 0.040 k 0.005 q 0.002 w 0.015

e 0.130 l 0.035 r 0.065 x 0.005

f 0.020 m 0.030 s 0.060 y 0.020

g 0.015 z 0.002
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Statistical Analysis

• f(c) frequency of character c in ciphertext
• ϕ(i) correlation of frequency of letters in 

ciphertext with corresponding letters in 
English, assuming key is i
– ϕ(i) = Σ0 ≤ c ≤ 25 f(c)p(c – i) so here,
ϕ(i) = 0.1p(6 – i) + 0.1p(7 – i) + 0.1p(10 – i) + 
0.3p(14 – i) + 0.2p(17 – i) + 0.1p(20 – i) + 
0.1p(25 – i)

• p(x) is frequency of character x in English
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Correlation: ϕ(i) for 0 ≤ i ≤ 25

i ϕ(i) i ϕ(i) i ϕ(i) i ϕ(i)
0 0.0482 7 0.0442 13 0.0520 19 0.0315
1 0.0364 8 0.0202 14 0.0535 20 0.0302
2 0.0410 9 0.0267 15 0.0226 21 0.0517
3 0.0575 10 0.0635 16 0.0322 22 0.0380
4 0.0252 11 0.0262 17 0.0392 23 0.0370
5 0.0190 12 0.0325 18 0.0299 24 0.0316
6 0.0660 25 0.0430
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The Result

• Most probable keys, based on ϕ:
– i = 6, ϕ(i) = 0.0660

• plaintext EBIIL TLOLA
– i = 10, ϕ(i) = 0.0635

• plaintext AXEEH PHKEW
– i = 3, ϕ(i) = 0.0575

• plaintext HELLO WORLD
– i = 14, ϕ(i) = 0.0535

• plaintext WTAAD LDGAS

• Only English phrase is for i = 3
– That’s the key (3 or ‘D’)
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Cæsar’s Problem

• Key is too short
– Can be found by exhaustive search
– Statistical frequencies not concealed well

• They look too much like regular English letters

• So make it longer
– Multiple letters in key
– Idea is to smooth the statistical frequencies to 

make cryptanalysis harder
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Vigènere Cipher

• Like Cæsar cipher, but use a phrase
• Example

– Message THE BOY HAS THE BALL
– Key VIG
– Encipher using Cæsar cipher for each letter:

key    VIGVIGVIGVIGVIGV
plain  THEBOYHASTHEBALL
cipher OPKWWECIYOPKWIRG
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Relevant Parts of Tableau

G I V
A G I V
B H J W
E L M Z
H N P C
L R T G
O U W J
S Y A N
T Z B O
Y E H T

• Tableau shown has 
relevant rows, columns 
only

• Example encipherments:
– key V, letter T: follow V 

column down to T row 
(giving “O”)

– Key I, letter H: follow I 
column down to H row 
(giving “P”)
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Useful Terms

• period: length of key
– In earlier example, period is 3

• tableau: table used to encipher and decipher
– Vigènere cipher has key letters on top, plaintext 

letters on the left
• polyalphabetic: the key has several different 

letters
– Cæsar cipher is monoalphabetic
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Attacking the Cipher 

• Approach
– Establish period; call it n
– Break message into n parts, each part being 

enciphered using the same key letter
– Solve each part

• You can leverage one part from another

• We will show each step
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The Target Cipher

• We want to break this cipher:
ADQYS MIUSB OXKKT MIBHK IZOOO

EQOOG IFBAG KAUMF VVTAA CIDTW

MOCIO EQOOG BMBFV ZGGWP CIEKQ

HSNEW VECNE DLAAV RWKXS VNSVP

HCEUT QOIOF MEGJS WTPCH AJMOC

HIUIX
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Establish Period

• Kaskski: repetitions in the ciphertext occur when 
characters of the key appear over the same 
characters in the plaintext

• Example:
key    VIGVIGVIGVIGVIGV
plain  THEBOYHASTHEBALL
cipher OPKWWECIYOPKWIRG

Note the key and plaintext line up over the repetitions 
(underlined). As distance between repetitions is 9, the 
period is a factor of 9 (that is, 1, 3, or 9)
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Repetitions in Example
Letters Start End Distance Factors

MI 5 15 10 2, 5
OO 22 27 5 5
OEQOOG 24 54 30 2, 3, 5
FV 39 63 24 2, 2, 2, 3
AA 43 87 44 2, 2, 11
MOC 50 122 72 2, 2, 2, 3, 3
QO 56 105 49 7, 7
PC 69 117 48 2, 2, 2, 2, 3
NE 77 83 6 2, 3
SV 94 97 3 3
CH 118 124 6 2, 3
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Estimate of Period

• OEQOOG is probably not a coincidence
– It’s too long for that
– Period may be 1, 2, 3, 5, 6, 10, 15, or 30

• Most others (7/10) have 2 in their factors
• Almost as many (6/10) have 3 in their 

factors
• Begin with period of 2 × 3 = 6
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Check on Period

• Index of coincidence is probability that two 
randomly chosen letters from ciphertext will 
be the same

• Tabulated for different periods:
1 0.066 3 0.047 5 0.044
2 0.052 4 0.045 10 0.041
Large 0.038
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Compute IC

• IC = [n (n – 1)]–1 Σ0≤i≤25 [Fi (Fi – 1)]
– where n is length of ciphertext and Fi the 

number of times character i occurs in ciphertext
• Here, IC = 0.043

– Indicates a key of slightly more than 5
– A statistical measure, so it can be in error, but it 

agrees with the previous estimate (which was 6)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #9-30

Splitting Into Alphabets

alphabet 1: AIKHOIATTOBGEEERNEOSAI
alphabet 2: DUKKEFUAWEMGKWDWSUFWJU
alphabet 3: QSTIQBMAMQBWQVLKVTMTMI
alphabet 4: YBMZOAFCOOFPHEAXPQEPOX
alphabet 5: SOIOOGVICOVCSVASHOGCC
alphabet 6: MXBOGKVDIGZINNVVCIJHH
• ICs (#1, 0.069; #2, 0.078; #3, 0.078; #4, 0.056; #5, 

0.124; #6, 0.043) indicate all alphabets have 
period 1, except #4 and #6; assume statistics off
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Frequency Examination

ABCDEFGHIJKLMNOPQRSTUVWXYZ
1 31004011301001300112000000
2 10022210013010000010404000
3 12000000201140004013021000
4 21102201000010431000000211
5 10500021200000500030020000
6 01110022311012100000030101
Letter frequencies are (H high, M medium, L low):

HMMMHMMHHMMMMHHMLHHHMLLLLL
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Begin Decryption

• First matches characteristics of unshifted alphabet
• Third matches if I shifted to A
• Sixth matches if V shifted to A
• Substitute into ciphertext (bold are substitutions)
ADIYS RIUKB OCKKL MIGHK AZOTO
EIOOL IFTAG PAUEF VATAS CIITW 
EOCNO EIOOL BMTFV EGGOP CNEKI

HSSEW NECSE DDAAA RWCXS ANSNP
HHEUL QONOF EEGOS WLPCM AJEOC 

MIUAX
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Look For Clues

• AJE in last line suggests “are”, meaning second 
alphabet maps A into S:
ALIYS RICKB OCKSL MIGHS AZOTO
MIOOL INTAG PACEF VATIS CIITE
EOCNO MIOOL BUTFV EGOOP CNESI
HSSEE NECSE LDAAA RECXS ANANP
HHECL QONON EEGOS ELPCM AREOC
MICAX
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Next Alphabet

• MICAX in last line suggests “mical” (a common 
ending for an adjective), meaning fourth alphabet 
maps O into A:
ALIMS RICKP OCKSL AIGHS ANOTO 
MICOL INTOG PACET VATIS QIITE 
ECCNO MICOL BUTTV EGOOD CNESI 
VSSEE NSCSE LDOAA RECLS ANAND
HHECL EONON ESGOS ELDCM ARECC 
MICAL
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Got It!

• QI means that U maps into I, as Q is always 
followed by U:
ALIME RICKP ACKSL AUGHS ANATO 
MICAL INTOS PACET HATIS QUITE 
ECONO MICAL BUTTH EGOOD ONESI 
VESEE NSOSE LDOMA RECLE ANAND 
THECL EANON ESSOS ELDOM ARECO 
MICAL
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One-Time Pad

• A Vigenère cipher with a random key at least as 
long as the message
– Provably unbreakable
– Why? Look at ciphertext DXQR. Equally likely to 

correspond to plaintext DOIT (key AJIY) and to 
plaintext DONT (key AJDY) and any other 4 letters

– Warning: keys must be random, or you can attack the 
cipher by trying to regenerate the key

• Approximations, such as using pseudorandom number 
generators to generate keys, are not random
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Overview of the DES

• A block cipher:
– encrypts blocks of 64 bits using a 64 bit key
– outputs 64 bits of ciphertext

• A product cipher
– basic unit is the bit
– performs both substitution and transposition 

(permutation) on the bits
• Cipher consists of 16 rounds (iterations) each with 

a round key generated from the user-supplied key
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Generation of Round Keys
key

PC-1

C0 D0

LSH LSH

D1

PC-2 K1

K16
LSH LSH

C1

PC-2

• Round keys are 48 bits 
each
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Encipherment
input

IP

L0 R0

⊕ f K1

L1 = R0 R1 = L0 ⊕ f(R0, K1)

R16 = L15 -  f(R15, K16) L16 = R15

IPĞ1

output
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The f Function
RiĞ1 (32 bits)

E

RiĞ1 (48 bits)

Ki (48 bits)

⊕

S1 S2 S3 S4 S5 S6 S7 S8

6 bits into each

P

32 bits

4 bits out of each
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Controversy

• Considered too weak
– Diffie, Hellman said in a few years technology 

would allow DES to be broken in days
• Design using 1999 technology published

– Design decisions not public
• S-boxes may have backdoors



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #9-42

Undesirable Properties

• 4 weak keys
– They are their own inverses

• 12 semi-weak keys
– Each has another semi-weak key as inverse

• Complementation property
– DESk(m) = c ⇒ DESk′(m′) = c′

• S-boxes exhibit irregular properties
– Distribution of odd, even numbers non-random
– Outputs of fourth box depends on input to third box
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Differential Cryptanalysis

• A chosen ciphertext attack
– Requires 247 plaintext, ciphertext pairs

• Revealed several properties
– Small changes in S-boxes reduce the number of pairs 

needed
– Making every bit of the round keys independent does 

not impede attack
• Linear cryptanalysis improves result

– Requires 243 plaintext, ciphertext pairs
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DES Modes

• Electronic Code Book Mode (ECB)
– Encipher each block independently

• Cipher Block Chaining Mode (CBC)
– Xor each block with previous ciphertext block
– Requires an initialization vector for the first one

• Encrypt-Decrypt-Encrypt Mode (2 keys: k, k′)
– c = DESk(DESk′

–1(DESk(m)))
• Encrypt-Encrypt-Encrypt Mode (3 keys: k, k′, k′′) 

– c = DESk(DESk′ (DESk′′(m)))
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CBC Mode Encryption

⊕

init. vector m1

DES

c1

⊕

m2

DES

c2

sent sent

…

…

…
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CBC Mode Decryption

⊕

init. vector c1

DES

m1

…

…

…

⊕

c2

DES

m2
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Self-Healing Property

• Initial message
– 3231343336353837 3231343336353837 
3231343336353837 3231343336353837

• Received as (underlined 4c should be 4b)
– ef7c4cb2b4ce6f3b f6266e3a97af0e2c 
746ab9a6308f4256 33e60b451b09603d

• Which decrypts to
– efca61e19f4836f1 3231333336353837 
3231343336353837 3231343336353837

– Incorrect bytes underlined
– Plaintext “heals” after 2 blocks
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Current Status of DES

• Design for computer system, associated software 
that could break any DES-enciphered message in a 
few days published in 1998

• Several challenges to break DES messages solved 
using distributed computing

• NIST selected Rijndael as Advanced Encryption 
Standard, successor to DES
– Designed to withstand attacks that were successful on 

DES
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Public Key Cryptography

• Two keys
– Private key known only to individual
– Public key available to anyone

• Public key, private key inverses

• Idea
– Confidentiality: encipher using public key, 

decipher using private key
– Integrity/authentication: encipher using private 

key, decipher using public one
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Requirements

1. It must be computationally easy to 
encipher or decipher a message given the 
appropriate key

2. It must be computationally infeasible to 
derive the private key from the public key

3. It must be computationally infeasible to 
determine the private key from a chosen 
plaintext attack
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Diffie-Hellman

• Compute a common, shared key
– Called a symmetric key exchange protocol

• Based on discrete logarithm problem
– Given integers n and g and prime number p, 

compute k such that n = gk mod p
– Solutions known for small p
– Solutions computationally infeasible as p grows 

large
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Algorithm

• Constants: prime p, integer g ≠ 0, 1, p–1
– Known to all participants

• Anne chooses private key kAnne, computes public 
key KAnne = gkAnne mod p

• To communicate with Bob, Anne computes 
Kshared = KBobkAnne mod p

• To communicate with Anne, Bob computes 
Kshared = KAnnekBob mod p
– It can be shown these keys are equal
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Example

• Assume p = 53 and g = 17
• Alice chooses kAlice = 5

– Then KAlice = 175 mod 53 = 40
• Bob chooses kBob = 7

– Then KBob = 177 mod 53 = 6
• Shared key:

– KBobkAlice mod p = 65 mod 53 = 38
– KAlicekBob mod p = 407 mod 53 = 38
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RSA

• Exponentiation cipher
• Relies on the difficulty of determining the 

number of numbers relatively prime to a 
large integer n
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Background

• Totient function φ(n)
– Number of positive integers less than n and relatively 

prime to n
• Relatively prime means with no factors in common with n

• Example: φ(10) = 4
– 1, 3, 7, 9 are relatively prime to 10

• Example: φ(21) = 12
– 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively 

prime to 21
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Algorithm

• Choose two large prime numbers p, q
– Let n = pq; then φ(n) = (p–1)(q–1)
– Choose e < n such that e is relatively prime to  
φ(n).

– Compute d such that ed mod φ(n) = 1
• Public key: (e, n); private key: d
• Encipher: c = me mod n
• Decipher: m = cd mod n
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Example: Confidentiality

• Take p = 7, q = 11, so n = 77 and φ(n) = 60
• Alice chooses e = 17, making d = 53
• Bob wants to send Alice secret message HELLO 

(07 04 11 11 14)
– 0717 mod 77 = 28
– 0417 mod 77 = 16
– 1117 mod 77 = 44
– 1117 mod 77 = 44
– 1417 mod 77 = 42

• Bob sends 28 16 44 44 42
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Example

• Alice receives 28 16 44 44 42
• Alice uses private key, d = 53, to decrypt message:

– 2853 mod 77 = 07
– 1653 mod 77 = 04
– 4453 mod 77 = 11
– 4453 mod 77 = 11
– 4253 mod 77 = 14

• Alice translates message to letters to read HELLO
– No one else could read it, as only Alice knows her 

private key and that is needed for decryption
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Example: 
Integrity/Authentication

• Take p = 7, q = 11, so n = 77 and φ(n) = 60
• Alice chooses e = 17, making d = 53
• Alice wants to send Bob message HELLO (07 04 11 11 

14) so Bob knows it is what Alice sent (no changes in 
transit, and authenticated)
– 0753 mod 77 = 35
– 0453 mod 77 = 09
– 1153 mod 77 = 44
– 1153 mod 77 = 44
– 1453 mod 77 = 49

• Alice sends 35 09 44 44 49
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Example
• Bob receives 35 09 44 44 49
• Bob uses Alice’s public key, e = 17, n = 77, to decrypt message:

– 3517 mod 77 = 07
– 0917 mod 77 = 04
– 4417 mod 77 = 11
– 4417 mod 77 = 11
– 4917 mod 77 = 14

• Bob translates message to letters to read HELLO
– Alice sent it as only she knows her private key, so no one else could have 

enciphered it
– If (enciphered) message’s blocks (letters) altered in transit, would not 

decrypt properly
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Example: Both
• Alice wants to send Bob message HELLO both enciphered 

and authenticated (integrity-checked)
– Alice’s keys: public (17, 77); private: 53
– Bob’s keys: public: (37, 77); private: 13

• Alice enciphers HELLO (07 04 11 11 14):
– (0753 mod 77)37 mod 77 = 07
– (0453 mod 77)37 mod 77 = 37
– (1153 mod 77)37 mod 77 = 44
– (1153 mod 77)37 mod 77 = 44
– (1453 mod 77)37 mod 77 = 14

• Alice sends 07 37 44 44 14
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Security Services

• Confidentiality
– Only the owner of the private key knows it, so 

text enciphered with public key cannot be read 
by anyone except the owner of the private key

• Authentication
– Only the owner of the private key knows it, so 

text enciphered with private key must have 
been generated by the owner
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More Security Services

• Integrity
– Enciphered letters cannot be changed 

undetectably without knowing private key
• Non-Repudiation

– Message enciphered with private key came 
from someone who knew it
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Warnings

• Encipher message in blocks considerably 
larger than the examples here
– If 1 character per block, RSA can be broken 

using statistical attacks (just like classical 
cryptosystems)

– Attacker cannot alter letters, but can rearrange 
them and alter message meaning

• Example: reverse enciphered message of text ON to 
get NO



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #9-65

Cryptographic Checksums

• Mathematical function to generate a set of k
bits from a set of n bits (where k ≤ n).
– k is smaller then n except in unusual 

circumstances
• Example: ASCII parity bit

– ASCII has 7 bits; 8th bit is “parity”
– Even parity: even number of 1 bits
– Odd parity: odd number of 1 bits
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Example Use

• Bob receives “10111101” as bits.
– Sender is using even parity; 6 1 bits, so 

character was received correctly
• Note: could be garbled, but 2 bits would need to 

have been changed to preserve parity
– Sender is using odd parity; even number of 1 

bits, so character was not received correctly
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Definition

• Cryptographic checksum h: A→B:
1. For any x ∈ A, h(x) is easy to compute
2. For any y ∈ B, it is computationally infeasible to 

find x ∈ A such that h(x) = y
3. It is computationally infeasible to find two inputs x, 

x′ ∈ A such that x ≠ x′ and h(x) = h(x′)
– Alternate form (stronger): Given any x ∈ A, it is 

computationally infeasible to find a different x′ ∈ A
such that h(x) = h(x′).
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Collisions

• If x ≠ x′ and h(x) = h(x′), x and x′ are a 
collision
– Pigeonhole principle: if there are n containers 

for n+1 objects, then at least one container will 
have 2 objects in it.

– Application: if there are 32 files and 8 possible 
cryptographic checksum values, at least one 
value corresponds to at least 4 files
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Keys

• Keyed cryptographic checksum: requires 
cryptographic key
– DES in chaining mode: encipher message, use 

last n bits. Requires a key to encipher, so it is a 
keyed cryptographic checksum.

• Keyless cryptographic checksum: requires 
no cryptographic key
– MD5 and SHA-1 are best known; others 

include MD4, HAVAL, and Snefru 
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HMAC

• Make keyed cryptographic checksums from 
keyless cryptographic checksums

• h keyless cryptographic checksum function that 
takes data in blocks of b bytes and outputs blocks 
of l bytes. k′ is cryptographic key of length b bytes
– If short, pad with 0 bytes; if long, hash to length b

• ipad is 00110110 repeated b times
• opad is 01011100 repeated b times
• HMAC-h(k, m) = h(k′ ⊕ opad || h(k′ ⊕ ipad || m))

– ⊕ exclusive or, || concatenation
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Key Points

• Two main types of cryptosystems: classical and 
public key

• Classical cryptosystems encipher and decipher 
using the same key
– Or one key is easily derived from the other

• Public key cryptosystems encipher and decipher 
using different keys
– Computationally infeasible to derive one from the other

• Cryptographic checksums provide a check on 
integrity



3.1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3

Traditional 

Symmetric-Key Ciphers



3.2

❏ To define the terms and the concepts of symmetric

key ciphers

❏ To emphasize the two categories of traditional

ciphers: substitution and transposition ciphers

❏ To describe the categories of cryptanalysis used to

break the symmetric ciphers

❏ To introduce the concepts of the stream ciphers and

block ciphers

❏ To discuss some very dominant ciphers used in the

past, such as the Enigma machine

Objectives

Chapter 3
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3-1   INTRODUCTION

Figure 3.1 shows the general idea behind a symmetric-key

cipher. The original message from Alice to Bob is called

plaintext; the message that is sent through the channel is

called the ciphertext. To create the ciphertext from the

plaintext, Alice uses an encryption algorithm and a shared

secret key. To create the plaintext from ciphertext, Bob

uses a decryption algorithm and the same secret key.

3.1.1 Kerckhoff’s Principle

3.1.2 Cryptanalysis

3.1.3 Categories of Traditional Ciphers

Topics discussed in this section:
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Figure 3.1  General idea of symmetric-key cipher

3.1 Continued
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3.1 Continued

If P is the plaintext, C is the ciphertext, and K is the key,

We assume that Bob creates P1; we prove that P1 = P:
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Figure 3.2  Locking and unlocking with the same key

3.1 Continued
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3.1.1     Kerckhoff’s Principle

Based on Kerckhoff’s principle, one should always

assume that the adversary, Eve, knows the

encryption/decryption algorithm. The resistance of the

cipher to attack must be based only on the secrecy of the

key.
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3.1.2     Cryptanalysis

As cryptography is the science and art of creating secret

codes, cryptanalysis is the science and art of breaking

those codes.

Figure 3.3  Cryptanalysis attacks
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3.1.2 Continued

Figure 3.4  Ciphertext-only attack

Ciphertext-Only Attack
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3.1.2 Continued

Figure 3.5  Known-plaintext attack

Known-Plaintext Attack
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3.1.2 Continued

Figure 3.6  Chosen-plaintext attack

Chosen-Plaintext Attack
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3.1.2 Continued

Figure 3.7  Chosen-ciphertext attack

Chosen-Ciphertext Attack
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3-2   SUBSTITUTION CIPHERS

A substitution cipher replaces one symbol with another.

Substitution ciphers can be categorized as either

monoalphabetic ciphers or polyalphabetic ciphers.

3.2.1 Monoalphabetic Ciphres

3.2.2 Polyalphabetic Ciphers

Topics discussed in this section:

A substitution cipher replaces one 

symbol with another.

Note
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3.2.1     Monoalphabetic Ciphers

In monoalphabetic substitution, the 

relationship between a symbol in the 

plaintext to a symbol in the ciphertext is 

always one-to-one.

Note
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3.2.1 Continued

The following shows a plaintext and its corresponding ciphertext.

The cipher is probably monoalphabetic because both l’s (els) are

encrypted as O’s.

Example 3.1

The following shows a plaintext and its corresponding ciphertext.

The cipher is not monoalphabetic because each l (el) is encrypted

by a different character.

Example 3.2
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3.2.1 Continued

The simplest monoalphabetic cipher is the additive cipher. This

cipher is sometimes called a shift cipher and sometimes a Caesar

cipher, but the term additive cipher better reveals its

mathematical nature.

Additive Cipher

Figure 3.8  Plaintext and ciphertext in Z26
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Figure 3.9  Additive cipher

3.2.1 Continued

When the cipher is additive, the 

plaintext, ciphertext, and key are 

integers in Z26.

Note
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3.2.1 Continued

Use the additive cipher with key = 15 to encrypt the message

“hello”.

Example 3.3

We apply the encryption algorithm to the plaintext, character by

character:

Solution
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3.2.1 Continued

Use the additive cipher with key = 15 to decrypt the message

“WTAAD”.

Example 3.4

We apply the decryption algorithm to the plaintext character by

character:

Solution
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3.2.1 Continued

Historically, additive ciphers are called shift ciphers. Julius Caesar

used an additive cipher to communicate with his officers. For this

reason, additive ciphers are sometimes referred to as the Caesar

cipher. Caesar used a key of 3 for his communications.

Shift Cipher and Caesar Cipher

Additive ciphers are sometimes referred 

to as shift ciphers or Caesar cipher.

Note
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3.2.1     Continued

Eve has intercepted the ciphertext “UVACLYFZLJBYL”. Show

how she can use a brute-force attack to break the cipher.

Example 3.5

Eve tries keys from 1 to 7. With a key of 7, the plaintext is “not

very secure”, which makes sense.

Solution
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3.2.1 Continued

Table 3.1  Frequency of characters in English

Table 3.2  Frequency of diagrams and trigrams
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3.2.1 Continued

Eve has intercepted the following ciphertext. Using a statistical

attack, find the plaintext.

Example 3.6

When Eve tabulates the frequency of letters in this ciphertext, she

gets: I =14, V =13, S =12, and so on. The most common character

is I with 14 occurrences. This means key = 4.

Solution
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3.2.1 Continued
Multiplicative Ciphers

In a multiplicative cipher, the plaintext 

and ciphertext are integers in Z26; the 

key is an integer in Z26*.

Note

Figure 3.10  Multiplicative cipher



3.25

3.2.1 Continued

What is the key domain for any multiplicative cipher?

Example 3.7

The key needs to be in Z26*. This set has only 12 members: 1, 3, 5,

7, 9, 11, 15, 17, 19, 21, 23, 25.

Solution

We use a multiplicative cipher to encrypt the message “hello” with

a key of 7. The ciphertext is “XCZZU”.

Example 3.8
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3.2.1 Continued
Affine Ciphers

Figure 3.11  Affine cipher
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3.2.1 Continued

The affine cipher uses a pair of keys in which the first key is from

Z26* and the second is from Z26. The size of the key domain is

26 × 12 = 312.

Example 3.09

Use an affine cipher to encrypt the message “hello” with the key

pair (7, 2).

Example 3.10
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3.2.1 Continued

Use the affine cipher to decrypt the message “ZEBBW” with the

key pair (7, 2) in modulus 26.

Example 3.11

Solution

The additive cipher is a special case of an affine cipher in which

k1 = 1. The multiplicative cipher is a special case of affine cipher in

which k2 = 0.

Example 3.12
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3.2.1 Continued

Because additive, multiplicative, and affine ciphers have small key

domains, they are very vulnerable to brute-force attack.

Monoalphabetic Substitution Cipher

A better solution is to create a mapping between each plaintext

character and the corresponding ciphertext character. Alice and

Bob can agree on a table showing the mapping for each character.

Figure 3.12  An example key for monoalphabetic substitution cipher
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3.2.1 Continued

We can use the key in Figure 3.12 to encrypt the message

Example 3.13

The ciphertext is
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3.2.2     Polyalphabetic Ciphers

In polyalphabetic substitution, each occurrence of a

character may have a different substitute. The

relationship between a character in the plaintext to a

character in the ciphertext is one-to-many.

Autokey Cipher
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3.2.2 Continued

Assume that Alice and Bob agreed to use an autokey cipher with

initial key value k1 = 12. Now Alice wants to send Bob the message

“Attack is today”. Enciphering is done character by character.

Example 3.14
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3.2.2 Continued
Playfair Cipher

Figure 3.13  An example of a secret key in the Playfair cipher

Let us encrypt the plaintext “hello” using the key in Figure 3.13.

Example 3.15
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3.2.2 Continued

Vigenere Cipher

We can encrypt the message “She is listening” using the 6-

character keyword “PASCAL”.

Example 3.16
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3.2.2 Continued

Let us see how we can encrypt the message “She is listening” using

the 6-character keyword “PASCAL”. The initial key stream is (15,

0, 18, 2, 0, 11). The key stream is the repetition of this initial key

stream (as many times as needed).

Example 3.16
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3.2.2 Continued

Vigenere cipher can be seen as combinations of m additive ciphers.

Example 3.17

Figure 3.14  A Vigenere cipher as a combination of m additive ciphers
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3.2.2 Continued

Using Example 3.18, we can say that the additive cipher is a

special case of Vigenere cipher in which m = 1.

Example 3.18

Table 3.3  
A Vigenere Tableau
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3.2.2 Continued
Vigenere Cipher (Crypanalysis)

Let us assume we have intercepted the following ciphertext:

Example 3.19

The Kasiski test for repetition of three-character segments yields

the results shown in Table 3.4.
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3.2.2 Continued

Let us assume we have intercepted the following ciphertext:

Example 3.19

The Kasiski test for repetition of three-character segments yields

the results shown in Table 3.4.
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3.2.2 Continued

The greatest common divisor of differences is 4, which means that

the key length is multiple of 4. First try m = 4.

Example 3.19 (Continued)

In this case, the plaintext makes sense.
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3.2.2 Continued
Hill Cipher

Figure 3.15  Key in the Hill cipher

The key matrix in the Hill cipher needs to 

have a multiplicative inverse.

Note
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3.2.2 Continued

For example, the plaintext “code is ready” can make a 3 × 4

matrix when adding extra bogus character “z” to the last block

and removing the spaces. The ciphertext is “OHKNIHGKLISS”.

Example 3.20

Figure 3.16  Example 3.20
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3.2.2 Continued

Assume that Eve knows that m = 3. She has intercepted three

plaintext/ciphertext pair blocks (not necessarily from the same

message) as shown in Figure 3.17.

Example 3.21

Figure 3.17  Example 3.21
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3.2.2 Continued

She makes matrices P and C from these pairs. Because P is

invertible, she inverts the P matrix and multiplies it by C to get the

K matrix as shown in Figure 3.18.

Example 3.21

Figure 3.18  Example 3.21

Now she has the key and can break any ciphertext encrypted with

that key.

(Continued)
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3.2.2 Continued

One of the goals of cryptography is perfect secrecy. A

study by Shannon has shown that perfect secrecy can be

achieved if each plaintext symbol is encrypted with a key

randomly chosen from a key domain. This idea is used in

a cipher called one-time pad, invented by Vernam.

One-Time Pad
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3.2.2 Continued
Rotor Cipher

Figure 3.19  A rotor cipher
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3.2.2 Continued
Enigma Machine

Figure 3.20  A schematic of the  Enigma machine
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3-3   TRANSPOSITION CIPHERS

A transposition cipher does not substitute one symbol for

another, instead it changes the location of the symbols.

3.3.1 Keyless Transposition Ciphers

3.3.2 Keyed Transposition Ciphers

3.3.3 Combining Two Approaches

Topics discussed in this section:

A transposition cipher reorders symbols.

Note
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3.3.1     Keyless Transposition Ciphers

Simple transposition ciphers, which were used in the

past, are keyless.

A good example of a keyless cipher using the first method is the

rail fence cipher. The ciphertext is created reading the pattern row

by row. For example, to send the message “Meet me at the park”

to Bob, Alice writes

Example 3.22

She then creates the ciphertext “MEMATEAKETETHPR”.
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3.3.1 Continued

Alice and Bob can agree on the number of columns and use the

second method. Alice writes the same plaintext, row by row, in a

table of four columns.

Example 3.23

She then creates the ciphertext “MMTAEEHREAEKTTP”.
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3.3.1 Continued

The cipher in Example 3.23 is actually a transposition cipher. The

following shows the permutation of each character in the plaintext

into the ciphertext based on the positions.

Example 3.24

The second character in the plaintext has moved to the fifth

position in the ciphertext; the third character has moved to the

ninth position; and so on. Although the characters are permuted,

there is a pattern in the permutation: (01, 05, 09, 13), (02, 06, 10,

13), (03, 07, 11, 15), and (08, 12). In each section, the difference

between the two adjacent numbers is 4.
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3.3.2     Keyed Transposition Ciphers

The keyless ciphers permute the characters by using

writing plaintext in one way and reading it in another

way The permutation is done on the whole plaintext to

create the whole ciphertext. Another method is to divide

the plaintext into groups of predetermined size, called

blocks, and then use a key to permute the characters in

each block separately.
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3.3.2 Continued

Alice needs to send the message “Enemy attacks tonight” to Bob..

Example 3.25

The key used for encryption and decryption is a permutation key,

which shows how the character are permuted.

The permutation yields



3.54

3.3.3    Combining Two Approaches

Example 3.26
Figure 3.21 
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Figure 3.22  Encryption/decryption keys in transpositional ciphers

3.3.3 Continued
Keys

In Example 3.27, a single key was used in two directions for the

column exchange: downward for encryption, upward for

decryption. It is customary to create two keys.
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Figure 3.23  Key inversion in a transposition cipher

3.3.3 Continued
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3.3.3 Continued
Using Matrices

We can use matrices to show the encryption/decryption process

for a transposition cipher.

Figure 3.24  Representation of the key as a matrix in the transposition cipher

Example 3.27
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Figure 3.24  Representation of the key as a matrix in the transposition cipher

3.3.3 Continued

Figure 3.24 shows the encryption process. Multiplying the 4 × 5

plaintext matrix by the 5 × 5 encryption key gives the 4 × 5

ciphertext matrix.

Example 3.27



3.59

3.3.3 Continued
Double Transposition Ciphers

Figure  3.25   Double transposition cipher
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3-4   STREAM AND BLOCK CIPHERS

The literature divides the symmetric ciphers into two

broad categories: stream ciphers and block ciphers.

Although the definitions are normally applied to modern

ciphers, this categorization also applies to traditional

ciphers.

3.4.1 Stream Ciphers

3.4.2 Block Ciphers

3.4.3 Combination

Topics discussed in this section:
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3.4.1 Stream Ciphers

Call the plaintext stream P, the ciphertext stream C, and

the key stream K.

Figure 3.26  Stream cipher
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3.4.1 Continued

Additive ciphers can be categorized as stream ciphers in which the

key stream is the repeated value of the key. In other words, the

key stream is considered as a predetermined stream of keys or

K = (k, k, …, k). In this cipher, however, each character in the

ciphertext depends only on the corresponding character in the

plaintext, because the key stream is generated independently.

Example 3.30

The monoalphabetic substitution ciphers discussed in this chapter

are also stream ciphers. However, each value of the key stream in

this case is the mapping of the current plaintext character to the

corresponding ciphertext character in the mapping table.

Example 3.31
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3.4.1 Continued

Vigenere ciphers are also stream ciphers according to the

definition. In this case, the key stream is a repetition of m values,

where m is the size of the keyword. In other words,

Example 3.32

We can establish a criterion to divide stream ciphers based on

their key streams. We can say that a stream cipher is a

monoalphabetic cipher if the value of ki does not depend on the

position of the plaintext character in the plaintext stream;

otherwise, the cipher is polyalphabetic.

Example 3.33
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3.4.1 Continued

Additive ciphers are definitely monoalphabetic because ki in the

key stream is fixed; it does not depend on the position of the

character in the plaintext.

 Monoalphabetic substitution ciphers are monoalphabetic

because ki does not depend on the position of the corresponding

character in the plaintext stream; it depends only on the value of

the plaintext character.

 Vigenere ciphers are polyalphabetic ciphers because ki

definitely depends on the position of the plaintext character.

However, the dependency is cyclic. The key is the same for two

characters m positions apart.

Example 3.33 (Continued)
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3.4.2  Stream Ciphers

In a block cipher, a group of plaintext symbols of size m

(m > 1) are encrypted together creating a group of

ciphertext of the same size. A single key is used to

encrypt the whole block even if the key is made of

multiple values. Figure 3.27 shows the concept of a block

cipher.

Figure 3.27  Block cipher
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3.4.2     Continued

Playfair ciphers are block ciphers. The size of the block is m = 2.

Two characters are encrypted together.

Example 3.34

Hill ciphers are block ciphers. A block of plaintext, of size 2 or

more is encrypted together using a single key (a matrix). In these

ciphers, the value of each character in the ciphertext depends on

all the values of the characters in the plaintext. Although the key is

made of m × m values, it is considered as a single key.

Example 3.35

From the definition of the block cipher, it is clear that every block

cipher is a polyalphabetic cipher because each character in a

ciphertext block depends on all characters in the plaintext block.

Example 3.36
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3.4.3  Combination

In practice, blocks of plaintext are encrypted

individually, but they use a stream of keys to encrypt the

whole message block by block. In other words, the cipher

is a block cipher when looking at the individual blocks,

but it is a stream cipher when looking at the whole

message considering each block as a single unit.
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