
M & W 01:30 – 02:45 p.m. thru Discord CS447 Spring 2021

CS447 : Networks and Data Communications (sec. 02)
Programming Assignment #02

Total Points: 150

Assigned Date : Wednesday, March 17, 2021

Due Date : Wednesday, March 31, 2021 @ 01:29:59 p.m.

Overview

For your second project, your objective is to improve the overall functionality of your email application by adding
user authentication (on client-side) and p2p-like server-to-server communication (on server-side). Here’s the back
story.

Back Story

Soon after deployment, bizarre things started happening in Calculus’s email system. Haddock, for one, is quite
confused about the flurry of replies he is getting to emails he didn’t even send. “What on ten thousand thundering
typhoons is going on here?” Haddock cries out furiously. “I bet that evil Rastapopoulos is behind all this”. Sure enough,
Calculus identifies that since his vanilla SMTP connection from client → server is unauthenticated, the server is
not able to validate who is sending emails. Moreover, he also discovers that anyone can login to read emails on the
receiving (HTTP) side without being authenticated.
To improve the security of his email system, Calculus plans to add authentication functionality through a simple
username-password combo, and make servers audit client activities through event logs; the servers will now log
every interaction it have with other hosts for postmortem diagnosis purposes. Calculus also plans support sending
emails to domains other than 447.edu domain.

Technical Requirements

All PR01 technical requirements apply to PR02. The following requirements must be met in addition.

1. Sender Authentication: Provide support for the SMTP command AUTH. Read Section 4 of the SMTP Authenti-
cation Extension RFC found at https://tools.ietf.org/html/rfc4954 for a description of the command.

• The AUTH command is issued between the HELO and MAIL commands in the SMTP sequence.
• Following the AUTH command, the server replies back with code 334 dXNlcm5hbWU6† prompting the user

to enter his/her username. (e.g. username@447.edu).
• Once the user sends his username, the server then responds back with code 334 cGFzc3dvcmQ6‡ prompt-

ing the user to enter his/her password.
• A successful (or failed) authentication is marked by the appropriate reply code. Read Section 6 of RFC

#4954 for status codes and implement the appropriate ones.

†‘username’ in base64
‡‘password’ in base64

last updated: 03/16/21 @ 9:47am 1

https://tools.ietf.org/html/rfc4954


M & W 01:30 – 02:45 p.m. thru Discord CS447 Spring 2021

2. To keep the project within the 2-week time spec, the following simplified password strategy is proposed. Here
the server generates passwords for all clients. Password change mechanisms are outside the scope of this
project.

(a) The first time the user responds to 334 dXNlcm5hbWU6, the server replies back with a randomly generated
alpha-numeral string of length 6 over reply code 330 (instead of code 334 cGFzc3dvcmQ6). The aforemen-
tioned alpha-numeral is the server generated user password. On the server-side, the server prefixes this
string with 447S21 (for salting), encodes it in base64, and stores the encoded password along with the
corresponding username in a hidden master password file named “.user_pass”. This master password
file should reside inside the db folder.

(b) Upon receiving the 330 code and the server generated password, the client immediately terminates the
current connection.§ The user must re-initiate a connection to the server for proper authentication.

(c) On all successive connections, the client responds to server’s request for the password, i.e. 334
cGFzc3dvcmQ6, by typing in the previously received alpha-numeral.

(d) The server validates the user’s authenticity by salting the incoming string, encoding it in base64, and
comparing the result with what’s stored in .user_pass against the corresponding username. If the two
values match, the authentication phase is successful.

(e) The user is allowed to enter usernames and passwords in plaintext on the terminal. However, your client
programs should only exchange base64 encoded username and password strings with the server. In
otherwords, the server receives base64 encoded username and password.

(f) Note that the username used for authentication does NOT necessarily need to match the sender moniker
(i.e., <sender>@447.edu) in the sender’s email. Such an attempt will fail the authorization step listed
below under Logistics.

3. Only when the authentication is successful the user is able to proceed to the next command in the SMTP
sequence, i.e., MAIL FROM command.

4. Receiver Authentication: This is similar in function to the sender authentication. Due to time constraints, we’ll
use a simplified HTTP authentication mechanism instead of following HTTPS standards.

• Upon receiver → server connection, use the same procedure as item 2 above for receiver authentica-
tion. Make your server prompt for username and password, compare the values against the stored value
in the password file. You will have to go through a registration phase for new receivers just like in the
sender registration listed under 2.(a) above. You may also use the same reply codes.

5. Only successfully authenticated users are allowed to download unread emails.
6. Server Incident Management: The server(s) keep an active log file (named .server_log) of the connection

activities. Every time the server sends or receives a message, a log entry is added to this log file. More
specifically, each log entry (single line) has the following format:

Answer

timestamp from-ip to-ip protocol-command reply-code description

7. Inter-Domain SMTP: Your email application is now required to support communications between the 447.edu
domain (from PR01) and other domains. For example, tintin@447.edu can now email haddock@490.edu
(similar to how someone can email from gmail to yahoo).

• The sender’s SMTP server needs to directly communicate with the receiver’s SMTP server to transfer the
email from source to destination. This behavior is akin to how real-world SMTP servers work (see fig.
2.16 in the textbook).

• Note that during this server → server exchange, the sender’s SMTP server “behaves” like a SMTP
client relative to the receiver’s SMTP server. As such, this exchange must follow the sender → server
interaction specification from PR01. However, the process is automated without any user intervention.

• The server incident management (item 6 above) still applies to even server → server communication.
• Each server’s own domain, that of the remote server(s), and their socket addresses are provided through

the corresponding server configuration file. Here’s a skeleton sample configuration file.
§It probably makes sense to print the decoded alpha-numeral value to the standard output before terminating this connection.

last updated: 03/16/21 @ 9:47am 2



M & W 01:30 – 02:45 p.m. thru Discord CS447 Spring 2021

server.conf

[SELF_DOMAIN]
SMTP_PORT=
HTTP_PORT=

[REMOTE_DOMAIN] //remote domain #1
IP=
PORT=

The [REMOTE_DOMAIN] block can be duplicated to support any number of different domains. We will at
least test with 2 (or 3) different domains. You may assume all domains are under the .edu top-level
domain.

Logistics

All PR01 Logistics requirements applies to PR02. The following additional requirements are listed mostly for
clarification purposes.

• Only authenticated and authorized senders are allowed to use particular server to send emails. Authentication
is described above in technical requirements. Here, authorization means two things:

– The server must check the username entered for authentication matches the sender moniker of the mail
from field.

– The server must prevent users from sending emails pretending to be from other domains. As an
example, Tintin should NOT be able to use the SMTP server for the 447.edu domain to send emails as
tintin@490.edu

• Similarly, only authenticated and authorized receivers should be allowed to retrieve emails using a particular
(HTTP) server.

• All SMTP command validations, including the infamous end of message dot (.), and error code generation
should be done at the server side and not at the client side. For all practical purposes, the sending client is
just a message relay.

• For the receiver, when the user successfully logs in, he/she should be greeted with the unread number of
messages in the server. The user should be given the option to either selectively read a message or read all
messages.

• for improved user friendliness, prompt the user for appropriate command parameters (instead of asking for
both command syntax and parameters) during the SMTP interaction.

• Similarly, the receiver is no longer expected to type the HTTP GET message syntax. Your program will do
that for the user based on his preferences. Think about it. Have you ever typed in a the HTTP GET syntax on
your browser before visiting a web page?

• Emails read by the receiver should be downloaded to his (mock) local machine. You are allowed either
keep the original copy in the server (IMAP standard) or to delete it (POP3 standard) after it’s downloaded.
However, on a successive login the number of unread message count should be updated accordingly.

• In addition to the audit log, all servers should print the log entry of all activities real-time (i.e. as they happen)
on the standard output.

Instructions

• Start early!!. Ask questions through Discord := Projects channel before making costly incorrect assump-
tions.

• Take backups of your code often!!.
• Follow a good coding standard. Use one of Google’s coding standard found here https://google.github.

io/styleguide/, if you don’t already follow one.

last updated: 03/16/21 @ 9:47am 3

https://google.github.io/styleguide/
https://google.github.io/styleguide/


M & W 01:30 – 02:45 p.m. thru Discord CS447 Spring 2021

• Your code must compile and run on a typical Linux setup. Neither the instructor nor his grader will use (or
entertain the use of) any IDE to test your implementation. Be sure to test command line compilation and run
before submission.

• Absolutely do not include executables, folders created by your programs, hidden files, version control
repositories, or your test emails in this tarball. All project relevant file formatting standards (PDF, README,
.email, .txt, .tar.gz) will be strictly monitored and is subject to penalties.

• The due date of this assignment is Wednesday, March 31, 2021 @ 01:29:59 p.m. . A Moodle dropbox will be
opened for submission.

• Based on past student experience, multi-threading is not as obvious as it may look. I suggest you to first get a
single-threaded version working correctly and then think about extending it to multi-threading.

• This assignment can be fully developed using the socket API of your programming language and basic I/O
API. Use of other packages/libraries without the instructors permission is not permitted. The use of an
appropriate base64 library is allowed. Check Useful Resources section below for some resources.

Deliverables

A complete solution comprises of:

• A short report of the design and implementation of your system. The report should be PDF format. At a
minimum, your report should include the following sections:

– Introduction: Your objective and what you hope to gain from the assignment.
– Overall design, specific design choices, and reply codes used.
– The output of a sample run. Include plenty screenshots wherever applicable. In situations were we can’t

verify expected behavior, your screenshots maybe considered for partial credit.
– Summary and Issues encountered. What you were able to achieve from your own objectives (from the

introduction) as well as project specifications. Make sure to explicitly list functionality you failed to
implement (or buggy).

• A compressed tarball that contains:

– a directory containing (only) your source code and config files. Do not include executables, folders
created by your programs, or any other files not specifically listed here as required.

– A short README file with compilation and run instructions.
– A makefile (mandatory) to compile your code especially if it involves compiling multiple executables

with flag options. Python based submissions should use the makefile to echo the content of your README
file.

To create a compressed tarball of the directory source-dir, use the following command:
tar -zcvf siue-id-pr2.tar.gz source-dir/.
e.g. tar -zcvf tgamage-pr2.tar.gz PR02/

Collaborating on ideas or answering each other’s questions is always encouraged. Most times, I find that you
learn a lot from your peers. However, do not share/copy/duplicate code from others, including online sources.
The exercise is meant for you to learn network programming, not to test your googling abilities. Issues related to
academic integrity and plagiarism have ZERO tolerance.

Useful Resources

• Linux Man pages – found in all linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic network program-

ming http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
• Simple Mail Transfer Protocol RFC #2821 https://tools.ietf.org/html/rfc2821
• Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content RFC #7231 https://tools.ietf.org/html/

rfc7231

last updated: 03/16/21 @ 9:47am 4

http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231


M & W 01:30 – 02:45 p.m. thru Discord CS447 Spring 2021

• Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing RFC #7230 https://tools.ietf.org/
html/rfc7230

• SMTP Service Extension for Authentication RFC #4954 https://tools.ietf.org/html/rfc4954
• Base64 encoding/decoding:

– C/C++

* glib – https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html

* openssl http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
* GNU coreutils http://www.gnu.org/software/coreutils/coreutils.html

– Java 14 – https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/Base64.html
– Python 2 – https://docs.python.org/2.7/library/base64.html
– Python 3 – https://docs.python.org/3/library/base64.html
– Additional Resource – http://rosettacode.org/wiki/Base64_encode_data#C

If you use any other resources, make sure to cite those in your report. Using online resources does not mean
you are allowed to copy and use someone else’s code for your purpose. Such incidents, if detected, will be
treated as academic dishonesty.

last updated: 03/16/21 @ 9:47am 5

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc4954
https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
http://www.gnu.org/software/coreutils/coreutils.html
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/Base64.html
https://docs.python.org/2.7/library/base64.html
https://docs.python.org/3/library/base64.html
http://rosettacode.org/wiki/Base64_encode_data#C

