
M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

CS 447 : Networks and Data Communications
Programming Assignment #03

Total Points: 150

Assigned Date : Wednesday, April 17, 2019

Due Date : Wednesday, May 01, 2019 @ 11:59:59 a.m. (Strong Deadline)

Overview

For your third (and final) project, you will improve your PR02 by adding secure communication to it.
Note: This final assignment has a firm deadline and does not include the typical 48-hour late penalty
period. Here’s the back story.

Back Story

Haddock was quite happy with Calculus’s email system until Thomson and Thompson showed up one
day with some devastating news. “You know Haddock, we have strong suspicions that Rastapopulus has been
sniffing all your emails using Wireshark, right Thompson?”, said Thomson. ”Precisely Thomson. In fact,
insecure communication means not only eavesdropping but also possible changes to plaintext exchanges during
transit too.” replied Thompson.
Haddock ran down the hallway and stormed into Calculus’s office. “Blue blistering barnacles! Calculus”,
screamed Haddock. “Thompsons are telling me that Rastapopulus is reading my emails using some sort of a
‘Shark’??”. Calculus calmed Haddock and explained to him that he plans to use Transport Layer Security
(TLS) in the next iteration of the email system to make it even more secure.

Technical Requirements

In order to keep this assignment within the time spec of the project and to accommodate the fact that TLS
requires a reliable transport layer protocol, the technical requirements of this assignment are simplified
in the following manner.

1. You are only required to develop a secure SMTP application, i.e., sender ↔ server interac-
tion, which was run on top of TCP. You can ignore the UDP interaction used for the server
↔ receiver communication. All other PR02 technical requirements applies to PR03, including
support for multiple concurrent clients.

2. Before initiating any SMTP protocol related interaction, your client and the servermust establish
a secure channel using TLS. See Logistics below for more information.

3. After establishing a secure channel, your clientmust first login to the server using a password for
authentication purposes. Strictly follow the same sender authentication strategy outlined in PR02.

last updated: 04/18/19 @ 12:23 Noon 1



M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

Figure 1: A Typical SSL Communication Workflow from the HP SSL Programming Tutorial.

4. You are required to also follow the salted password storage strategy proposed in PR02.
5. Your solution must use a TLSv1.2 (or newer depending on your language support) negotiation.

Refrain from using any of the (old) SSL negotiations.
6. Fix all outstanding issues from your PR02, except any that pertains to the UDP interaction.

Logistics

• All applicable PR02 Logistics requirements applies to PR03. You may ignore any logistical require-
ments related to UDP.
• Run Wireshark on a secure SMTP and on an unsecure interaction. Include your observations with

appropriately annotated screenshots on your project report. Are you convinced your new program
is secure? Comment on your observations.
• The general workflow of SSL integrated socket communication is shown in Figure 1 below.

The nature of this assignment will force you to do significant amount of unsupervised learning – online
research, forum scans, trial-and-error, and troubleshooting. Most likely, you will also discover (on your
own) that there are more than one library package implementation of openssl standard, especially for
C/C++, which might further complicate your task. So, don’t get frustrated but instead use this very
valuable learning opportunity to improve your understanding.
Here are some resources that I believe will help you.

last updated: 04/18/19 @ 12:23 Noon 2



M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

1. HP SSL Programming Tutorial:
http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04s03.html

2. Fedora Security Team – Defensive Coding
https://docs.fedoraproject.org/en-US/Fedora_Security_Team/1/html/Defensive_Coding/index.
html

3. OpenSSL Wiki – Simple TLS Server:
https://wiki.openssl.org/index.php/Simple_TLS_Server

4. OpenSSL Cookbook:
https://www.feistyduck.com/library/openssl-cookbook/online/

5. JSSE Reference Guide
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

6. OWASP – Using the Java Secure Socket Extensions:
https://www.owasp.org/index.php/Using_the_Java_Secure_Socket_Extensions

7. http://simplestcodings.blogspot.com/2010/08/secure-server-client-using-openssl-in-c.
html

8. http://stilius.net/java/java_ssl.php
9. pyOpenSSL Documentation
https://media.readthedocs.org/pdf/pyopenssl/latest/pyopenssl.pdf

Almost all of these helpful resources also include sample code that might aide you in your overall design
and development. Using online resources does not mean you are allowed to copy and use someone else’s
code for your purpose. Such incidents, if detected, will be treated as academic dishonesty, so please do
not copy-paste some else’s code in your solution. Instead, try to grasp the core idea behind their solution
and weave it in to your own work.
If you find a resource that you think will help your classmates, please share it with me so that I can
disperse it among you colleagues.

Extra Credit

• (20 points): Use a secure hash function instead of base64 encoding when storing salted passwords
in the hidden password file.
• (25 points): Improve your user interaction using the ncurses terminal UI.

Instructions

• Start early!!
• Take backups of your code often!!.
• Follow a good coding standard. Use a Google style guide matching for your favorite programming

language found here https://google.github.io/styleguide/, if you don’t already follow one.
• The due date of this assignment is Wednesday, May 01, 2019 @ 11:59:59 a.m. A dropbox will be

opened for submission through Moodle. This is a firm deadline with no late submission period.

Deliverables

A complete solution comprises of:

last updated: 04/18/19 @ 12:23 Noon 3

http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04s03.html
https://docs.fedoraproject.org/en-US/Fedora_Security_Team/1/html/Defensive_Coding/index.html
https://docs.fedoraproject.org/en-US/Fedora_Security_Team/1/html/Defensive_Coding/index.html
https://wiki.openssl.org/index.php/Simple_TLS_Server
https://www.feistyduck.com/library/openssl-cookbook/online/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://www.owasp.org/index.php/Using_the_Java_Secure_Socket_Extensions
http://simplestcodings.blogspot.com/2010/08/secure-server-client-using-openssl-in-c.html
http://simplestcodings.blogspot.com/2010/08/secure-server-client-using-openssl-in-c.html
http://stilius.net/java/java_ssl.php
https://media.readthedocs.org/pdf/pyopenssl/latest/pyopenssl.pdf
https://google.github.io/styleguide/


M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

• A short report (max 5 pages) in PDF format of the design and implementation of your system.
Your report should include the following subsections:

– Introduction
– Design choices and protocol/reply codes used.
– The output of a sample run (including screenshots where applicable).
– Summary and Issues encountered (if applicable).
– Proof of secure communication using properly annotated Wireshark screenshots. Submis-

sions that are unconvincing on this matter will be heavily penalized as the mail goal of PR03

revolves around secure communication.

Note: Your report will carry a significantly more weight in compared to the other two projects as
it will be a reflection of your unsupervised learning efforts. Please make sure to document your
efforts and to develop a good project report.
• A short readme file with compilation instructions. A makefile is mandatory if your solution

involves running multiple compilation instructions.
• A compressed tarball of the directory containing your source code. Since you will be essentially

improving your PR01 code base, submit appropriate patch files instead of full source code. Use
diff to generate patch files.

– The grader will freshly download your PR02 submission and apply the provided patch on it,
thus it is strongly recommended to test your patch for proper functionality on your original
PR02 submission. Given that we are backed-up against the end of the semester, we will
not have time for any grievances. As a result, projects that do not patch correctly, does not
provide sufficient information on how to do it, or does not work after patching will receive
an immediate zero grade.

• Do not include executables, folders created by your programs, or your test emails in this tarball.
To create a compressed tarball of the directory source, use the following command: tar -zcvf
siue-id-pr3.tar.gz source/. e.g. tar -zcvf tgamage-pr3.tar.gz PR03/.

Caution: File formatting standards (PDF, readme, make, and tar.gz) as well as some of the logistics
requirements are set forth to streamline the grading process. Submissions that take a unnecessarily long
time grade due to not following the standards listed in this document will be subject to penalties.

Collaborating on ideas or answering questions is always encouraged. Most times, I find that you learn
a lot from your peers. However, do not share/copy/duplicate code from others. If you use code found
online, remember to cite their source in your report. Issues related to academic integrity and plagiarism
have ZERO tolerance.

last updated: 04/18/19 @ 12:23 Noon 4


