
M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

CS 447 : Networks and Data Communications
Programming Assignment #01

Total Points: 150

Assigned Date : Thursday, February 06, 2019

Due Date : Thursday, February 20, 2019 @ 11:59:59 a.m.

Overview

Your first programming assignment is to implement a basic client/server application using the socket
interface. There are several objectives of this assignment. These are:

a. to get yourself familiarized working with the socket programming basics;
b. to understand the ordering of the socket interface primitives;
c. to get you exposed to linux system calls (if you already haven’t);
d. to gain a basic understanding of network protocols; and
e. to set yourself up for the rest of the course.

Back Story

Professor Calculus, returning from his latest conference, has just learned about the “power of the cloud”
and now wants to move his scientific calculator application to “the cloud”. He has learned enough
networking (to get by at least) and is prioritizing performance over reliability for his application. He
also wants his cloud-based calculator to accommodate requests from more than one person at a time.
Given that this is his first time network programming, he just wants to provide support for only three
basic operations:

1. The power function (POWER (xe)) for a given base x and an exponent e;
2. The cubic square root function (CUBE (3

√
x)) for a argument x; and

3. The factorial function (FACT (x!)).

Technical Requirements

• Server should be capable of accepting requests from UDP clients.
• Server should support multi-threading (more than one client should be capable of using the cloud-

calculator).
• Your protocol interaction should adhere to the following specifications.
• Client Commands:

1. HELO <server-hostname> – This is the first command issued by the client (→ server). A
successful/valid exchange is marked by reply code (see section on reply codes below) 200.

last updated: 01/29/19 @ 12:59 Noon 1

M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

2. HELP – This command can be issued anytime after the HELO command. A successful/valid
exchange is marked by reply code 200.

3. CALC – This command must be issued before any of the calculator functions (POWER/CUBE/FACT)
can be used. Reply code 200.

4. POWER <x><e> – The POWER command requests xe calculation. Reply code 250.
5. CUBE <x> – The CUBE command requests the cubic square root of a the given argument x.

Reply code 250.
6. FACT <x> – The FACT command requests the factorial value of x. Reply code 250.
7. BYE <server-hostname> – This command closes the connection and requests a graceful exit.

This command can be issued anytime during the interaction. The correct server reply code is
200.

• Server Reply Codes:

1. 200 Command Success. The command success reply code is issued only when the interaction
happens according to the correct specification. Examples:

– 200 HELO 10.1.2.3(UDP) – If the HELO command is issued as the first command.
– 200 BYE 10.1.2.3(UDP) – If the BYE command is issued.
– 200 <menu> – If the HELP command is issued after HELO. the calculator menu is sent with

this reply code.
– 200 CALC ready! – If the CALC command is issued at the correct point of interaction.

2. 250 <answer> – This reply code is issued in response to a correct calculator command syntax
received in the previous message from client. answer is the calculated value.

3. 500 – Syntax Error, command unrecognized.
4. 501 – Syntax error in parameters or arguments.
5. 503 – Bad sequence of commands.

Functional Requirements

1. IP addresses/hostnames and port numbers should not be hard coded.

• Your server executable will following the following execution signature:
./server <udp-port-number>
• Your client executable will accept two command line arguments as follows (assume your client

to know the correct hostname port-number combo):
./client <server-hostname> <server-port>

2. client-server connection is UDP-based (unreliable).
3. I will test with at least 2 simultaneous client connections, thus, your server should be multi-

threaded.
4. Client’s should exit gracefully. Server process is permitted to be forcefully killed.
5. Here’s a sample (non-comprehensive) UDP interaction. Assume the client’s IP address is 146.163.150.234

and running UDP and the server’s hostname is calco.

last updated: 01/29/19 @ 12:59 Noon 2

M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

Client Server
HELO calco →

← 200 HELO 146.163.150.234(UDP)
CUBE 64 →

← 503 CALC before CUBE
HELP →

← 200 <menu-sent-back>
CALC →

← 200 CALC ready!
CUBE 64 →

← 200 4
BYE calco →

← 200 BYE 146.163.150.234(UDP)

6. Your client and server should be able to run on two separate end systems. Bare minimum, you
should verify an interaction between a client running on a lab machine (EB 1036 dual boots to
Linux) and the “cs home” server and vice-versa. Depending on the firewall rules, you might also
be able to test from off-campus using your own laptop/desktop as one end system as well.

7. At the end of your implementation, you should be able to:

• Compile and run your code in a linux machine. Include a readme file with clear compilation
instructions.
• Run your server program first.
• Run one or more clients to connect to the server.
• Perform calculator functionality while meeting the technical requirements mentioned above.
• Exit the client(s) gracefully.

Instructions

• This is an individual assignment. Do your own work.
• Start early!! Take backups of your code often!!. Use of a version control software is highly

recommended! Note: Per course policy (see syllabus), keep any online repositories private if you
intend to use them for course material storage.
• Make sure to test your program properly before your final submission. It is highly recommended

to test build and run your submission on the home server, home.cs.siue.edu.
• You may use any programming language of your choice out of C, C++, Java, or Python. How-

ever, your code must compile and run on Linux.
• Absolutely DO NOT include executables with your submissions.
• A Makefile is mandatory. Whether or not your program needs to be compiled, have it echo

instructions to run the program.
• Follow a good coding standard. Use the Google C++ coding standard found here http://goo.gl/
1rC1o, if you don’t already follow one.
• The report part of your solution must be produced using a word processor. LATEX is highly recom-

mended but not a requirement.
• Your final report should be in PDF format. No exceptions.
• Any figures, graphs, plots, etc., should also be produced using appropriate computer applications.

If using LATEX, the pgfplots package is very useful for making all sorts of graphs.

last updated: 01/29/19 @ 12:59 Noon 3

http://goo.gl/1rC1o
http://goo.gl/1rC1o

M & W 12:00 – 01:15 p.m. EB 2160 CS 447 Spring 2019

• The due date of this assignment is Thursday, February 20, 2019 @ 11:59:59 a.m. A dropbox will
be opened for submission on Moodle.

Deliverables

A complete solution comprises of:

• A short report (max 5 pages) of the design and implementation of your system. Your report should
include the followings:

– Introduction
– Design choices and protocol/reply codes used.
– The output of a sample run with proprerly annotated screenshots. where applicable.
– Summary and Issues encountered (if applicable).

• A short README file with compilation and run instructions.
• A makefile to compile your code, especially if it involves compiling multiple executables with flag

options.
• A compressed tarball of the directory containing your source code, report, REAME, and makefile.

Absolutely do not include executables, folders created by your programs, your version control
repositories, or your test emails in this tarball. To create a compressed tarball of the directory
source, use the following command: tar -zcvf siue-id-pr1.tar.gz source/.
e.g. tar -zcvf tgamage-pr1.tar.gz PR01/.
• File formatting standards (pdf, README, .email, .txt, .tar.gz) will be strictly monitored and

is subject to penalties.

Collaborating on ideas or answering questions is always encouraged. Most times, I find that you learn
a lot from your peers. However, do not share/copy/duplicate code from others. If you use code found
online, remember to site their source in your report. Issues related to academic integrity and plagiarism
have ZERO tolerance.

Useful Resources

• Linux Man pages – found in all linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic network

programming http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf

last updated: 01/29/19 @ 12:59 Noon 4

http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf

