
Correctness proofs

James Aspnes

January 9, 2003

A correctness proof is a formal mathematical argument that an algorithm
meets its specification, which means that it always produces the correct out-
put for any permitted input. Detailed correctness proofs of even moderately
complex algorithms can be surprisingly long, so algorithms researchers (and
writers of textbooks like [CLRS01]) often write informal arguments giving
only an outline of the full proof. The relationship between the informal ar-
gument and the underlying proof is analogous to the relationship between
an informal definition of an algorithm and a program that implements it:
the informal argument is only justified by being backed by an implicit formal
proof that is sadly too long, unenlightening, or tiresome to present. So it
is important to understand what a detailed formal correctness proof looks
like, because otherwise you won’t know what somebody (possibly including
you!) is really saying with an informal correctness argument.

1 Invariants, preconditions, and postconditions

When viewed from a high enough level of abstraction, most correctness
proofs look something like this: define a predicate P that is true for “correct”
states of the algorithm. Then prove:

1. P holds in the initial state.

2. P holds after step k if it holds before step k.

3. If P holds when the algorithm terminates, then the output of the
algorithm is correct.

Such a predicate P is called an invariant of the algorithm. It is called an
invariant for the simple reason that it is always true; this follows by induction
from the first two statements above. It is a useful invariant because of the
third statement.

1

Many algorithms are big, and most programs even bigger, so finding
a single invariant that applies to an entire program usually makes about
as much sense as trying to write the entire program in one line of code.
We can break up the problem of proving a program or algorithm correct
by approaching it one statement at a time. One technique for doing this
is known as Hoare logic [Hoa69], a simplified version of which is described
below.

2 Hoare logic for straight-line programs

The essential idea of Hoare logic is that we attach to each statement of
a program a precondition (something that we demand is true before the
statement executes) and a postcondition (something that will then be true
after the statement executes). A precondition, statement, and postcondition
together form a Hoare triple. Preconditions and postconditions are typically
written inside curly braces to distinguish them from program code (Hoare
logic predates the C programming language).1 For example, here is a simple
Hoare triple:

{ x is even }
x := x+1
{ x is odd }

To show that the postcondition follows from the precondition, write x
for the old value of x and x′ for the new value, and observe that x = 0
(mod 2) implies x′ = x+ 1 = 1 (mod 2).

This Hoare triple only makes sense in a larger context. There are many
programs in which a variable is incremented, but most of the time we don’t
guarantee that the variable is even beforehand and don’t care if the variable
is odd afterwards. But suppose that we have some earlier statement whose
postcondition guarantees that x is in fact even:

{ x is an integer }
x := 2*x

1Technical note: Hoare put the program statement in braces instead of the assertion,
like this: x = 0{x := x + 1}x = 1. Some writers use this form for partially correct
triples, where the postcondition holds only if the statement terminates, reserving the
notation {x = 0} x := x + 1 {x = 1} for totally correct triples, where the statement is
guaranteed to terminate (see Section 6 for more on this distinction). We will be doing
partial correctness, but we are still going to put the assertions in the braces braces because
it makes it easier to annotate normal-looking program code.

2

{ x is even }

Now we can string these statements together to produce a program for
generating odd numbers:

{ P: x is an integer }
x := 2*x
{ Q: x is even }
x := x+1
{ R: x is odd }

Here we have labelled the conditions P , Q, and R. Since P implies Q
and Q implies R, we have that R holds at the end of the program provided
P holds at the beginning. We could thus abstract out the actual program
statements and produce yet another Hoare triple:

{ x is an integer }
run the above program
{ x is odd }

People who do this for a living have a formal way of writing rules like
the one we just used, which looks like this:

{P} S1 {Q} ∧ {Q} S2 {R}
{P} S1;S2 {R}

.

This is a fancy way of say that if we have already proven that {P} S1 {Q}
and {Q} S2 {R} (the stuff on top) are Hoare triples, then we can assert that
{P} S1;S2 {R} (the stuff on the bottom) is also a Hoare triple, where the
semicolon denotes sequential execution. Rules like this, which define what
new propositions can be deduced from old ones, are called axioms. This
particular axiom is called the composition axiom.

Here are some other basic axioms of Hoare logic, expressed formally:

• The pre-strengthening axiom,2 which says that making the precondi-
tion stronger doesn’t change the truth of a Hoare triple:

{Q} S {R} ∧ P ⇒ Q

{P} S {R}
.

2This axiom and the closely related post-weakening axiom were called rules of conse-
quence in Hoare’s original paper.

3

Real-world example: from

{studied ≥ 1 hour} take test {test-grade=A+} ,

we can use pre-strengthening to derive

{studied ≥ 1 month} take test {test-grade=A+} .

Pre-strengthening is mostly used to sneak in extra facts that don’t
appear explicitly in our original precondition, since it’s a standard
theorem in logic that whenever Q is true, P ⇒ P ∧Q is also true.

• The post-weakening axiom, which says that making the postcondition
weaker is also allowed:

{P} S {Q} ∧Q⇒ R

{P} S {R}
.

Real-world example: starting with

{studied ≥ 1 month} take test {test-grade=A+ ∧ other-grades=F} .

we get

{studied ≥ 1 month} take test {other-grades=F} .

Post-weakening is typically used for getting rid of bits of a postcondi-
tion we don’t care about.

Important caveat: The direction of the implications is important. Pre-
weakening and post-strengthening do not produce valid proofs.

• The assignment axiom:

{P [x/t]} x := t {P} .

In other words, if a predicate P is true with x replaced by t before the
assignment, it is true without the replacement afterwards. Here P [x/t]
is just a concise way of writing “P with x replaced by t.” Examples:

{0 = 0} x := 0 {x = 0} .

{x+ 5 < 12} x := x+ 5 {x < 12} .

In this second example we might want to apply pre-strengthening to
rewrite x+ 5 < 12 as the more natural x < 7.

4

• Finally, the baggage lemma:

{P1} S {Q1} ∧ {P2} S {Q2}
{P ∧ P2} S {Q1 ∧Q2}

.

The baggage lemma is used to carry along extra baggage that you
will need later. It is a lemma rather than an axiom because it fol-
lows from the other axioms.3 For example, suppose you can prove
that some very complicated statement S sets x to the square root
of z (written formally, {} S {x =

√
z}), but you also need to know

that after the statement executes, some variable y that is not as-
signed to in S is unchanged from its previous value (0, say). Use
the assignment, if/then/else, iteration, and composition axioms as
needed to prove {y = 0} S {y = 0}, and then use baggage to get
{y = 0} S {y = 0 ∧ x =

√
z}.

Most of the time these axioms will not be applied explicitly, but it is the
responsibility of the prover to make sure that anything they do claim can
be justified using them.

3 Strategy for proving correctness

Using Hoare logic, our general strategy for proving correctness has three
steps:

1. Write down the algorithm.

2. Annotate the algorithm by putting the precondition for the algorithm
at the top, the postcondition at the bottom, and an assertion in be-
tween each pair of statements.

3. Prove for each statement that its postcondition follows from its pre-
condition, using the axioms of Hoare logic and any other theorems we
need to drag in from mathematics in general (via prestrengthing and
post-weakening).

Since the axioms of Hoare logic are pretty simple, the last step is usually
tricky only if we chose the wrong preconditions in the middle. Here the
axioms of Hoare logic can help us. For example, suppose we want to show

{P} x := x+ 1 {x mod 2 = 1} ,
3The baggage lemma also did not appear in Hoare’s original paper, but it is too useful

to leave out.

5

but we don’t know what to put in for P . Here we can apply the assignment
axiom backwards to find the weakest precondition that makes this a Hoare
triple:

{(x+ 1) mod 2 = 1} x := x+ 1 {x mod 2 = 1} ,

which is implied by

{x mod 2 = 0} x := x+ 1 {x mod 2 = 1} ,

using pre-strengthening and the fact that (x+ 1) mod 2 = 1 is equivalent to
x mod 2 = 0, which we can show by adding 1 to both sides.

Using weakest preconditions is sometimes a good way to find bugs in
algorithms. If you work out that you can only have the algorithm be correct
if its input is even, but it’s supposed to work for all inputs, then you either
need to strengthen your algorithm’s precondition (in this case, change the
problem so you throw up your hands in despair given an odd input), or fix
your algorithm.

4 Proofs for if/then/else statements

Special axioms apply for compound statements. Suppose we want to show
that the following is a Hoare triple, where P and Q are arbitrary predicates
and B is some test:

{ P }
if B then

1 do something
else

2 do something else
end if
{ Q }

Here we need to fill in preconditions an postconditions for Lines 1 and
2. The result will look something like this:

{ P }
if B then

{ P and B }
1 do something

{ Q }
else

6

{ P and not B }
2 do something else

{ Q }
end if
{ Q }

And now we just need to prove that Line 1 makes Q true provided P ∧B
is true and that Line 2 makes Q true provided P ∧¬B is true. For example:

{ x = a }
if x < 0 then

{ x = a and x < 0 (which implies a < 0) }
x := -x
{ x = -a = |a| }

else
{ x = a and x >= 0 (which implies a >= 0) }
do nothing
{ x = a = |a| }

end if
{ x = |a| }

The formal axiom we are using (in addition to a couple of implicit appli-
cations of pre-strengthening and post-weakening), is the if/then/else axiom:

{P ∧B} S1 {Q} ∧ {P ∧ ¬B} S2 {Q}
{P} if B then S1 else S2 end if {Q}

.

5 Proofs for loops

Now consider the problem of proving correctness for a while loop:

{ P }
while B do

body
end while
{ Q }

How do we prove that Q holds at the end of the loop when P holds at
the beginning? It is tempting to insist that the body must make Q true,
but maybe it takes many passes through the body before Q is true. The
solution is to use an invariant R that holds at the beginning and end of each
pass through the body, and which implies Q when the loop terminates.

7

Here is a simple example of a program that zeroes out an array of n
elements, together with the precondition and postcondition we would like
to use for it.

{ A is an array with indices 0..n-1 }
i := n
while i <> 0 do

i := i - 1
A[i] := 0

end while
{ A[0]..A[n-1] are all equal to zero }

How do we prove the postcondition given the precondition? We need an
invariant R that is (1) true at the start of the loop (i.e., it follows from the
initial precondition); (2) true after each pass through the body of the loop if
it is true at the beginning (i.e., it is both a precondition and postcondition
of the body); and (3) implies the postcondition for the program. Here is an
attempt at R: we’ll insist that A[j] = 0 for all indicies j ≥ i. This invariant
holds initially because there are no indices j ≥ i. If it holds at the end of
the loop, then the postcondition is true because i is now 0 (otherwise the
loop would not terminate). To show that it is preserved by the body, we
annotate the program with additional preconditions and postconditions:

{ A is an array with indices 0..n-1 }
i := n

1 while i <> 0 do
{ A[j] = 0 for all j >= i }

2 i := i - 1
{ A[j] = 0 for all j >= i+1 }

3 A[i] := 0
{ A[j] = 0 for all j >= i }

end while
{ A[0]..A[n-1] are all equal to zero }

And now we just have to prove for each line in the body that its precon-
dition implies its postcondition. The proof of correctness for Lines 2 and 3
is left as an exercise to the reader (hint: use the assignment axiom and then
clean up with pre-strengthening/post-weakening).

Something to think about: what happens if we try to prove the correct-
ness of the following version of the program?

8

{ A is an array with indices 0..n-1 }
i := n
while i >= 0 do

A[i] := 0
i := i - 1

end while
{ A[0]..A[n-1] are all equal to zero }

The rule for while loops is that if R holds at the beginning of the loop,
and R is preserved by the body when the test B is true, then R∧¬B holds
when the loop terminates. Written formally, we have the iteration axiom:

{R ∧B} S {R}
{R} while B do S end while {R ∧ ¬B}

.

Often we won’t bother with remembering that B is true in the body of
the loop, and will just show that {R} S {R} holds. If this happens, we
can put B back in to get the strict form of the iteration axiom by applying
pre-strengthening.

Of course, we haven’t necessarily shown that the loop actually termi-
nates. This leads us to a useful distinction, between total correctness proofs
and partial correctness proofs.

6 Total vs partial correctness

In addition to proving that an algorithm produces the right output, we will
also want to show that it produces this output in a reasonable amount of
time, typically bounded by some function of the size of the input. This
latter task is a major part of algorithm analysis, and we will be spending a
lot of time on it over the rest of the semester. But since we will be showing
running time bounds later, we can often save time in our correctness proof
by proving only partial correctness, which says that the algorithm produces
the correct answer whenever it terminates, but allows for the possibility
that the algorithm does not terminate at all. We will call an algorithm that
produces the right answer provided it terminates partially correct, and call
it totally correct if it is partially correct and terminates on all inputs.

Partial correctness is most useful for algorithms involving while loops,
because we can assume that a loop’s termination condition is true when the
loop finishes, even if we don’t understand what is happenning inside the
loop. For example, here is a partially correct algorithm that computes the
value 1 given any positive integer as input:

9

procedure Collatz1(x: integer) returns integer:
while x <> 1:

if x is even:
x := x/2

else:
x := 3*x+1

end if
end while
return x

end procedure

Why do we know this is partially correct? Because the loop won’t finish
until x equals 1. It is widely believed that the loop body will eventually set
x to 1 [Lag85], but at the time of this writing few mathematicians expect
to see a proof of this conjecture soon.

Sometimes partial correctness is not so useful. Here is a “universal” par-
tially correct algorithm, which we might call the Exam-Taker’s Algorithm:

procedure ExamTaker:
while true:

hope for inspiration
end while

end procedure

Since the algorithm never terminates, it meets the criterion for partial
correctness no matter what answer it is supposed to produce. If you have
ever found yourself applying this algorithm, you will understand why this is
a problem.

Generally, we will only worry about proving the partial correctness of
an algorithm, because we will be considering its running time as a separate
step in the analysis. Provided we can put a finite bound on the running
time, total correctness is immediate (because only terminating algorithms
take finite time).

7 Proofs for recursive procedures

Partial correctness also comes into play in analyzing recursive procedures.
Here is a procedure that implements Euclid’s algorithm for computing the
greatest common divisor (GCD) of two positive integers:

procedure Euclid(x, y: integer) returns integer

10

if y = 0 then
gcd = x

else
gcd = Euclid(y, x mod y)

end if
return gcd

end procedure

How do we prove that this procedure works? Let’s assume as an induc-
tion hypothesis that the recursive call works, i.e. that Euclid(y, x mod y)
really does compute the gcd of x and x mod y.

We can then fill in preconditions throughout:

procedure Euclid(x, y: integer) returns integer
{ }

1 if y = 0 then
{ y = 0 }

2 gcd := x
{ gcd = gcd(x, y) }

else
{ y <> 0 }

3 gcd := Euclid(y, x mod y)
{ gcd = gcd(x, y) }

end if
{ gcd = gcd(x, y) }
return gcd

end procedure
{ return value = gcd(x, y) }

Now to prove partial correctness, we just walk through the lines of the
program one at a time and show that each each forms a valid Hoare triple
with its precondition and postcondition.

• For Line 1, apply the if/then/else axiom to the triples for lines 2 and
3.

• For Line 2, use the assignment axiom to show

{y = 0 ∧ x = x} Line 2 {gcd = x ∧ y = 0} ,

and then use post-weakening with gcd = x ∧ y = 0⇒ gcd = gcd(x, y)
to simplify the postcondition (since gcd(x, y) = gcd(x, 0) = x), and

11

pre-strengthening to get rid of the extraneous x = x in the precondi-
tion (since y = 0⇒ y = 0 ∧ x = x).

• For Line 3, we have to do a little number theory. We want to show that
when y 6= 0, gcd(x, y) = gcd(y, x mod y). Observe that if k divides
both x and y, then y = km for some m, x = kn for some n, and
there is an integer a such that x mod y = x − ay = kn − kam =
k(n − am), implying k divides both y and (x mod y). On the other
hand, if k divides both y and (x mod y), then x = ay + (x mod y) =
kam + kb = k(am + b) and k divides x. So the common divisors of
x and y are equal to the common divisors of y and (x mod y), and in
particular the greatest common divisors of the two pairs are the same.
So Euclid(y, x mod y) = gcd(y, x mod y) = gcd(x, y) is true given our
induction hypothesis.

Now let’s do some Hoare logic. Start with this result of the assignment
axiom plus post-weakening (to get rid of the extra y = 0 term):

{y 6= 0 ∧ Euclid(y, x mod y) = gcd(x, y)} Line 3 {gcd = gcd(x, y)} .

Our exercise in number theory showed that P ⇒ Q, where P is y = 0
and Q is Euclid(y, x mod y) = gcd(x, y). A standard tautology says
that in this case P ⇒ P ∧Q, and so we can drop Q from the precon-
dition using pre-strengthening:

{y 6= 0} Line 3 {gcd = gcd(x, y)} ,

which is what we set out to prove.

We have now completed the proof of partial correctness for the Euclid algo-
rithm.

Note that we still haven’t shown that the algorithm terminates. Indeed,
if we reverse the order of y and x mod y in the arguments to the recursive
call, the algorithm will still be partially correct (by the same argument),
but it will no longer be totally correct. Proving termination will be left for
later, when we look at this algorithm’s runtime.

8 A practical example

Let’s put together what we’ve learned. Suppose we want to prove the cor-
rectness of the following binary search procedure:

12

{ A[i] < A[j] when i < j; A[i] = t for some 0 <= i < n }
1 l := 0
2 h := n-1
3 while l < h do
4 m = (l + h) / 2 # C-style integer division
5 if A[m] < t then
6 l = m + 1

else
7 h = m

end if
end while
{ A[h] = t }

Working backwards, we see that we need an invariant R for the while
loop that implies A[h] = t when l = h. How do we get this invariant? Well,
our intuition for binary search is that we are keeping trace of a lower bound
l and an upper bound h on the position of t. So we’d like to say something
like A[l] ≤ t ≤ A[h]. Let’s try plugging this in:

{ A[i] < A[j] when i < j; A[i] = t for some 0 <= i < n }
1 l := 0
2 h := n-1

{ A[l] <= t <= A[h] }
3 while l < h do

{ A[l] <= t <= A[h] }
4 m = (l + h) / 2 # C-style integer division
5 if A[m] < t then
6 l = m + 1

else
7 h = m

end if
{ A[l] <= t <= A[h] }

end while
{ A[h] = t }

Now we’ll use the if/then/else axiom and the assignment axiom to fill in
some preconditions.

{ A[i] < A[j] when i < j; A[i] = t for some 0 <= i < n }
1 l := 0

13

2 h := n-1
{ A[l] <= t <= A[h] }

3 while l < h do
{ A[l] <= t <= A[h] }

4 m = (l + h) / 2 # C-style integer division
{ ??? }

5 if A[m] < t then
{ A[m] < t; A[m+1] <= t <= A[h] }

6 l = m + 1
{ A[l] <= t <= A[h] }

else
{ A[m] < t; A[l] <= t <= A[m] }

7 h = m
{ A[l] <= t <= A[h] }

end if
{ A[l] <= t <= A[h] }

end while
{ A[h] = t }

Now we have a big blank space where we need to find a precondition for
Line 5 that implies both preconditions for Lines 6 and 7. We know from the
precondition on Line 4 that t lies between A[l] and A[h]; so perhaps it is
enough to show that m lies between l and h. So let’s make the precondition
on Line 5 read:

{ A[l] <= t <= h; l <= m < h }

and then use the baggage lemma to carry the precondition at the top
throughout:

{ P: A[i] < A[j] when i < j; A[i] = t for some 0 <= i < n }
1 l := 0

{ P; A[l] <= t }
2 h := n-1

{ P; A[l] <= t <= A[h] }
3 while l < h do

{ P; A[l] <= t <= A[h]; l < h }
4 m := (l + h) / 2 # C-style integer division

{ P; A[l] <= t <= A[h]; l <= m < h }
5 if A[m] < t then

{ P; A[l] <= t <= A[h]; l <= m < h; A[m] < t }

14

6 l := m + 1
{ P; A[l] <= t <= A[h] }

else
{ P; A[l] <= t <= A[h]; l <= m < h; A[m] >= t }

7 h := m
{ P; A[l] <= t <= A[h] }

end if
{ P; A[l] <= t <= A[h] }

end while
{ A[h] = t }

Here I’ve replaced the preconditions we used to have on Lines 6 and 7
with ones that follow from the precondition on Line 5. We’ll have to show
that these imply the preconditions we really wanted (which means we can
use post-strengthening to show that Lines 6 and 7 give Hoare triples). But
we’ve now finished step 2 of our general proof technique: annotating the
program with true propositions in between each statement. What remains
is step 3—proving that each statement is the middle of a Hoare triple.

Proof for Line 1: Let’s start by applying the assignment axiom:

{P ∧A[0] ≤ t} l := 0 {P ∧A[l] ≤ t} . (1)

From the precondition we have A[i] = t for some i with 0 ≤ i. Since
0 ≤ i ⇒ A[0] ≤ A[i] = t, we have P ⇒ P ∧ A[0] ≤ A[i]. So now pre-
strengthening says we can replace the ugly precondition from (1) with the
stronger condition {P}.

Proof for Line 2: Essentially the same as for Line 1. Use the assignment
axiom to get

{P ∧A[l] ≤ A[t] ≤ A[n− 1]} h := n− 1 {P ∧A[l] ≤ A[t] ≤ A[h]} ,

and then apply pre-strengthening as before to get rid of the extra inequality
in the precondition.

Proof for Line 3: The iteration axiom gives

{P ∧A[l] ≤ t ≤ A[h]} Line 3 {P ∧A[l] ≤ t ≤ A[h] ∧ l ≥ h} .

But now l ≥ h implies A[l] ≥ A[h] and we have A[l] ≤ t ≤ A[h] ≤ A[l]. This
only works if in fact A[l] = t = A[h]. Now use post-weakening to get rid of
everything except A[h] = t.

15

Proof for Line 4: The assignment axiom gives us:{
P ∧A[l] ≤ t ≤ A[h] ∧ l < h ∧ l ≤

⌊
l+h

2

⌋
< h

}
m := (l + h)/2{

P ∧A[l] ≤ t ≤ A[h] ∧ l < h ∧ l ≤
⌊
l+h

2

⌋
< h

} .

Observe that l < h implies l ≤ l+l
2 ≤

⌊
l+h

2

⌋
< h+h

2 = h. Now use pre-
strengthening to remove this term from the precondition and post-weakening
to remove l < h from the postcondition.

Proof for Line 5: Immediate application of the if/then/else axiom.

Proof for Line 6: Use the assignment axiom to get:

{P ∧A[m+ 1] ≤ t ≤ A[h]} l := m+ 1 {P ∧A[l] ≤ t ≤ A[h]} (2)

Now apply pre-strengthening after observing that the precondition to Line
6 implies the precondition in (2): since A[m] < t, there exists i > m for
which A[i] = t. But then i ≥ m+ 1 and so A[m+ 1] ≤ A[i] = t.

Proof for Line 7: This is simpler than the proof of Line 6 because we
don’t need P . Start with the assignment axiom:

{P ∧A[l] ≤ t ≤ A[m]} h := m {P ∧A[l] ≤ t ≤ A[h]} ,

and apply pre-strengthening to add in l ≤ m < h and t ≤ A[h] and get the
full precondition.

This completes the proof of partial correctness for the binary search
algorithm. As before, we’ll defer proving termination to the the running
time analysis.

8.1 A note on the invariant

We were fortunate that we picked a loop invariant that was (a) true, and (b)
strong enough to prove itself. The usual way that proofs like this break down
is when the invariant turns out to be false (e.g., consider {A[l] ≤ t < A[h]},
or is too weak (we came close to this by not putting l ≤ h into the invariant,
but in this case P saves us). False invariants sometimes manifest themselves
as unproveable postconditions (for example, we can’t prove t < A[h] after
Line 2 without having t < A[n−1] before, which we don’t know to be true),

16

but often both false and true invariants break down inside the loop where
the precondition on the loop body has to be stronger than the invariant
plus the loop test. Whittling an invariant into shape often requires a fair bit
of creativity and understanding of the algorithm. If you can’t find a good
invariant, you may also want to look closely at the algorithm to see if it
really works.

8.2 Informal proof of correctness

Much of the subconscious education of mathematicians involves learning
when one can get away with writing a step of a proof informally, with the
understanding that the reader will be able to fill in the details if neces-
sary. The proof we gave above for the binary search algorithm is much
more detailed than you would usually see. A more typical proof might look
something like this (footnotes are added to show what Hoare logic axioms
to appeal to when the reader complains we are cheating):

Partial correctness proof: Observe that the precondition P is not af-
fected by any line of the algorithm; so we will assume that it holds through-
out.4 Let the loop invariant consist of P plus the proposition A[l] ≤ t ≤ A[h].
This invariant clearly holds at the start of the loop since l = 0, h = n − 1,
and A[0] ≤ t ≤ A[n−1] from P .5 To see that it holds at the end of the loop,
note that either A[m] < t, in which case t is at position m + 1 or higher
and A[l′] = A[m + 1] ≤ t, or t ≤ A[m], in which case t ≤ A[m] = A[h′].6

Finally, since h ≤ l when the loop exits, we have A[h] ≤ A[l] ≤ t ≤ A[h],
where the first inequality follows from P and the remaining inequalities are
the invariant, implying A[h] = t as claimed.7

Here’s an even shorter proof:
4Assignment axiom—none of the assignments modify any of the variables in P .
5Here we omitted the (relatively trivial) proofs for Lines 1 and 2 completely, figuring

that the reader remembers how assignment works well enough to believe us. The word
“clearly” in this statement fulfills the same function as the crooked tailors’ assertion that
only intelligent people could see the Emperor’s New Clothes—it warns the rabble that
they will be embarrassed if they complain about leaving the details out and the details
turn out to be as trivial as we claim. But beware of using clearly for things that aren’t
clear, or, even worse, that may be false–lest you act out the part of the naked emperor
yourself.

6This is compressing down the proofs of lines 5-7 by appealing to our intuition about
where t lives. Note the implicit appeal to the if/then/else axiom where we split into two
cases.

7While axiom.

17

Sketch of partial correctness proof: Use A[l] ≤ t ≤ A[h] as a loop
invariant.

What style of proof should you write? You should be able to write
a detailed Hoare logic proof like the one we did first, where you carefully
annotate the program and separately prove that the postcondition on each
line follows from its precondition—but you generally don’t have to unless
you are specifically asked to. Most of the correctness proofs you write will
look like the medium-compact proof (only without the footnotes). But a
confused reader has the right to expect that you could expand your compact
proof into a detailed proof if necessary.

You will see sketches like the last “proof” in research papers where the
authors were limited for space and had a lot of confidence in their reader’s
ability to regenerate the entire proof from a single key hint.8 Some lecturers
are also fond of putting up sketchy proof fragments like this and sneaking
away. You should probably not use this trick yourself until you’ve been
publishing successfully for a while. The TA who grades your assignments
will most likely not assume that you are just leaving out the boring parts of
a proof you understand.

References

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. McGraw-Hill, 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576–580, 1969.

[Lag85] Jeffrey C. Lagarias. The 3x+ 1 problem and its generalizations.
American Mathematical Monthly, 92(1):3–23, January 1985.

8Such confidence is not always misplaced— the average research paper is only ever read
by two people, and both of them are likely to be specialists (one of them is the author).

18

