
M & W 03:00 – 4:15 p.m. EB 1170 CS 456 Spring 2018

CS 456 : Advanced Algorithms
Programming Assignment #03

Total Points: 150

Assigned Date : Wednesday, April 04, 2018

Due Date : Wednesday, April 18, 2018 @ 02:59:59 p.m.

Overview

For your final programming assignment, you will implement algorithms to solve the famous NP-Hard
Traveling Salesman Problem (TSP). You will implement four algorithms: naive brute-force, branch-
and-bound, dynamic programming (i.e. Held-Karp Algorithm ), and a polynomial time approximation
algorithm using Minimum Spanning Trees (e.g. Christofides Algorithm). See https://goo.gl/FN99ig.

Your input will be a set of points in 2D space. You can travel from any point to any point in any order
you wish. You must then determine the shortest Hamiltonian Circuit of these points where cost is sim-
ply the Euclidean Distance.

Your output will be a simple ordered list of vertices that is the solution and its total length.

If you can come up with a polynomial time algorithm that is guaranteed to produce the optimal path,
you will win a million dollars since you have shown that P=NP. https://en.wikipedia.org/wiki/
Millennium_Prize_Problems.

Instructions

• This is an individual assignment. Do your own work.
• Start early!!
• Take backups of your code often!!.
• You may use any programming language of your choice. However, you must make sure that your

code compiles and runs on a typical Linux machine.
• It is highly recommended that you test your program’s compilation and execution on the home

server, home.cs.siue.edu, before submitting.
• Absolutely DO NOT include executables with your submissions.
• You MUST submit a makefile. If your program does not need to be compiled, then have the

makefile output instructions on how to execute your program instead.
• The report part of your solution must be produced using a word processor. I highly recommend

LATEX. The report must be in .pdf format.
• Any figures, graphs, plots, etc., should also be produced using appropriate computer applications.
• Graphs/plots should be properly labeled.

last updated: 04/03/18 @ 10:03am 1

https://goo.gl/FN99ig
https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://en.wikipedia.org/wiki/Millennium_Prize_Problems


M & W 03:00 – 4:15 p.m. EB 1170 CS 456 Spring 2018

• Your final report must be in .pdf format. No exceptions.
• Follow a good coding standard. Use the Google C++ coding standard found here http://goo.gl/
1rC1o, if you don’t already follow one.

• Include only the things necessary to run your program in your tarball.
• Include any additional instructions in a readme file if needed.
• Each algorithm should be their own program that takes a command line argument which is a

filepath to an input file. Output can simply be a print to the console of the complete path and the
total cost of that path.

Deliverables

The due date of this assignment is Wednesday, April 18, 2018 @ 02:59:59 p.m. A dropbox will be opened
for submission on Moodle before the due date. A complete submission includes:

• Report (in .pdf format)
• A compressed tarball that comprised of the Makefile and your source code (directory)

For example, submission to moodle:

lastname.tar.gz lastname.pdf

The tarball should be such that when it is decompressed it will create a directory that is named your
last name. Your makefile should be in the base directory created. Executables (created by issuing your
Makefile) should end up in the same directory as the Makefile.

DO NOT use any source code found online. The grader will actively check for possible plagiarism. You
can use pseudocode found online with proper citations in your report.

Report [120 points]

Your report should be structured as follows:

• Motivation and background of the experiment [5 points].
• For each algorithm, in their own sections, [25 points] per algorithm:

– Pseudocode of the algorithm [5 points].
– Correctness Proof [5 points].
– Problems Encountered/Key insights [5 points].
– Test results. This should include a graph that shows the execution runtimes of that particular

program. You should use input sizes that are big enough to insure that the main factor in
the runtime is the problem size, and also use enough inputs that the graph shows a clear
pattern. Part of this section for the MST approximation algorithm should include comparison
and justification of runtime versus solution accuracy as well as a numerical summary of the
solution accuracy for all of your tests. Is the trade off worth it for this particular algorithm?[5
points]

– Observations on and justification of results. If something seems odd, reason about it and offer
an explanation about why it is the way it is. [5 points]

• Conclusion and performance comparisons. This includes comparing the different algorithms
against each other in terms of speed as well as accuracy in this case since the approximation algo-
rithm will most likely not generate an optimal result. as well as how what difference the two data

last updated: 04/03/18 @ 10:03am 2

http://goo.gl/1rC1o
http://goo.gl/1rC1o


M & W 03:00 – 4:15 p.m. EB 1170 CS 456 Spring 2018

structures made. A graph comparing the run times to each other would be most appropriate.[20
points].

Executables [30 points]

A compressed tarball of the directory containing your source codes and Makefile. Do not include
executables in this tarball; we will do a fresh compile of your code using your Makefile. Do not include
test files, we will use our own. To create a compressed tarball of the directory source, use the following
command: tar -zcvf name.tar.gz source/. Change name to your last name. The only files it should
have is a Makefile and source code files.

• Program correct accepts command line input [2.5 x 4 points]
• Program produces correct output [2.5 x 4 points]
• Good coding practices e.g. naming conventions, readable code, commenting, etc. [2.5 x 4 points]

Extra Credit

Being able to utilize parallelization in program execution is an important ability, especially today when
processing speedups are coming from the inclusion of multiple processing cores instead of simply faster
processing cores.

For extra credit, create a pseudo code for each algorithm that shows how to successfully execute all or
part of each algorithm in parallel. [5x4 points]
The format for the input file will be one point per line, starting with the x value, then a space, then the
y value. The ID for the points will simply be the line it is on, starting at 0.

Input Example

With an input file of:
0 0

1 3

4 10

We will have point 0 at (0,0), point 1 at (1,3), and point 2 at (4,10).

last updated: 04/03/18 @ 10:03am 3


