
M & W 03:00 – 4:15 p.m. EB 1170 CS 456 Spring 2018

CS 456 : Advanced Algorithms
Programming Assignment #02

Total Points: 150

Assigned Date : Wednesday, February 28, 2018

Due Date : Wednesday, March 21, 2018 @ 02:59:59 p.m.

Overview

For your second programming assignment, you will tackle the All-Pairs Shortest Path Problem (APSP)
using two different approaches – Floyd-Warshall Algorithm and the Johnson’s Algorithm – and em-
pirically validate their asymptotic runtime behavior on various graph types using computer generated
results. Note: Johnson’s Algorithm (CLRS pgs. 700 – 706) uses Bellman-Ford Algorithm (to detect
negative-weight cycles), and Dijkstra’s Algorithm as subroutines. As discussed in class, the runtime
of Dijkstra varies based on the underlaying data structure being used. For this assignment, you are
expected to implement two variants for Dijkstra – Fibonnacci Heap (CLRS Ch. 19), and Min-Priority
Heap (CLRS Sec. 6.5).
By the time you complete this assignment, you are expected to have implemented a total of five algo-
rithms – Floyd-Warshall, Bellman-Ford, Dijkstra+Fibonnacci, Dijkstra+Min-Heap, and Johnson’s. You
are expected specifically to think about and address the following questions during your testing:

a. At what size of the input data n0 does each version start to exhibit asymptotic behavior?
b. What type of input data (in this case, graphs) do you need to show the asymptotic behavior for

each version of the algorithm?
c. How do you plan to generate the appropriate graphs?
d. How does the empirical (i.e., measured) runtime correspond to the theoretical complexity analysis

(such as counting the number of basic operations as discussed in class)?
e. How to create your test driver so that it demonstrates the various asymptotic behaviors for same

input?
f. How to create the algorithm class so that it will be extensible and reusable for future projects?

Instructions

• This is an individual assignment. Do your own work.
• Start early!!
• Take backups of your code often!!.
• You may use any programming language of your choice out of the four major languages – C, C++,
Java, Python. However, you must make sure that your code compiles and runs on a typical Linux
machine.

• Absolutely DO NOT include executables with your submissions.

last updated: 03/01/18 @ 12:50 Noon 1

M & W 03:00 – 4:15 p.m. EB 1170 CS 456 Spring 2018

• You MUST submit a Makefile. If your program does not need to be compiled, then have the
makefile output instructions on how to execute your program instead.

• It is highly recommended that you test your program’s compilation and execution on the home
server, home.cs.siue.edu, before submitting.

• The report part of your solution must be produced using a word processor. I highly recommend
LATEX. The report must be in .PDF format. No exceptions.

• Any figures, graphs, plots, etc., should also be produced using appropriate computer applica-
tions.Graphs/plots should be properly labeled.

• Follow a good coding standard. Use the Google C++ coding standard found here http://goo.gl/
1rC1o, if you don’t already follow one.

• Include only the things necessary to run your program in your tarball. Absolutely do not include
executables of any format with your submission.

• Include any additional instructions in a README file if needed.

Logistics

Given the nature of the assignment, it will be necessary to generate many different types of large graphs
for testing; so it would be a good idea to start early producing graphs. This can either be accomplished
by creating your own generator that allows for variations of edges and vertices. Also, datasets and
generators can be found on online that model networks. https://www-complexnetworks.lip6.fr/
~latapy/FV/generation.html and http://snap.stanford.edu/data/ are two such examples. Note:
You might have to manipulate the datasets found online into the form needed for this assignment.

• For input, prompt user for the input filename (along with the path, if not under pwd).
• All input files should follow an adjacency list format that has each line containing the vertex name

followed by a list of the adjacent vertex:weights tuple. e.g. A B:3 C:4 means A is connected
to B and C with cost/weight 3 and 4 respectively. Only alpha-numerals, spaces, and : allowed in
input files. The sample input below depicts a non-negative directed graph.

• It is important that the same input graph is run on all algorithm variants you implement for
proper comparison. Also make sure to run the same input file multiple times and take the average
to eliminate statistical outliers.

• For output, generate a file named [inputFileName]Out.txt. The top three lines of this output file
should include the empirically measured runtimes for all your implementations followed by the
individual results of each algorithm separated by a header naming the algorithm.

• Be sure to test enough different size inputs to accurately graph empirical behavior.

Important: It is important to test your implementations against varies types of graphs to fully appreciate
the effectiveness of different algorithms and their utility. As such, ensure to test your implementations
against sparse vs. dense graphs, directed vs. undirected graphs, as well as non-negative vs. negative
weighted graphs.

Deliverables

The due date of this assignment is Wednesday, March 21, 2018 @ 02:59:59 p.m. A dropbox will be
opened for submission on Moodle before the due date. A complete solution comprises of:

• [120 points] A report that includes the following sections:

last updated: 03/01/18 @ 12:50 Noon 2

http://goo.gl/1rC1o
http://goo.gl/1rC1o
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
http://snap.stanford.edu/data/

M & W 03:00 – 4:15 p.m. EB 1170 CS 456 Spring 2018

– [5 points] Motivation and background of the experiment .
– [90 points] For each of the three implementation variants – Floyd-Warshall, Fibonacci-based

Johnson, Min-Heap-based Johnson, in their own sections, per variant
� [5 points] Appropriately annotated Pseudocode with theoretical runtime analysis. It is

advised to add a code walkthrough of the algorithms that explains why they have the
time complexity that they have.

� [8 points] Correctness proof.
� [12 points] Test results. This should naturally include graph(s) showing empirical execu-

tion time in comparison to the corresponding theoretical runtime. You should ensure to
use sufficiently large input to establish a runtime behavior pattern.

� [5 points] Observations and insights. You must be able to justify and/or argue the em-
pirical asymptotic behavior you are observing.

– [25 points] Overall conclusions and performance comparisons. This includes comparison
of different algorithmic approaches to the problem against each other, comparing and con-
trasting runtime behavior, as well as a discussion on the impact of data structures where
applicable. This section should also explain the graphs that were displayed in the test results
section

• [30 points] A compressed tarball of the directory containing your source codes, Makefile, and a
few samples of different graph types. Do not include executables in this tarball; we will do a fresh
compile of your code using your Makefile. To create a compressed tarball of the directory source,
use the following command: tar -zcvf name-pr2.tar.gz source/. Obviously, change the name
to your last name.

Sample input file

in format:
vertexname adj.vertex weight adj.vertex weight.....
small.txt
1 3:6 4:3
2 1:3
3 4:2
4 2:1 3:1
5 2:4 4:2

Sample output file

smallOut.txt
Floyd-Warshall: .0256s
Johnson Min-Heap: .0212s
Johnson Fibonnaci Heap: .0225s

Final Solution:
0 4 4 3 -1
3 0 7 6 -1
6 2 0 2 -1
4 1 1 0 -1
6 3 3 2 0

last updated: 03/01/18 @ 12:50 Noon 3

