
M & W 03:00 – 04:15 p.m. EB 0140 CS 456 Spring 2016

CS 456 : Advanced Algorithms
Programming Assignment #03

Total Points: 150

Assigned Date : Monday, April 18, 2016

Due Date : Monday, May 2, 2016 @ 02:59:59 p.m.

Overview

For your last programming assignment, you will implement three different algorithms to solve the 0-1
Knapsack Problem – the exhaustive (Sec 3.4 in Levitin), the dynamic (Sec 8.2 in Levitin), and the branch-and-
bound (Sec 12.2 in Levitin) – and empirically validate their asympototic runtime behavior using computer
generated results. More specifically, you are expected to think about and address the following ques-
tions:

a. At what size n0 does your implementation start to exhibit asymptotic complexity?
b. How do you plan to generate the appropriate input?
c. How does the measured run time correspond to the abstract complexity analysis using operation

counting (as discussed in class)?
d. In the case of the three optimal solutions, at what sizes do the algorithms perform better than the

others? What are the characteristics of the input that could influence the choice of algorithm to
use?

e. How do you plan to show the inherent differences in the algorithms’ complexity using visual
representations?

f. How to create the algorithms so that they will be extensible and reusable for future projects.

Instructions

• This is an individual assignment. Do your own work.
• Start early!!
• Take backups of your code often!!.
• Make sure to test your program properly before your final submission.
• You may use any programming language of your choice. However, you must make sure that your

code compiles and runs on a typical Linux machine. Absolutely DO NOT include executables
with your submissions. A Makefile is mandatory. Please test your makefile on Linux machine
prior to sending. Do not assume that your program can be designed in Visual Studio, Eclipse, or
NetBeans on Windows and then transition to a Linux machine without problems.

• The report part of your solution must be produced using a word processor. Any figures, graphs,
plots, etc., should also be produced using appropriate computer applications. Be professional
with your reports; properly label and title your graphs; properly caption and cross-reference your
figures; make sure to include all sections/subsection mentioned below.

last updated: 04/18/16 @ 1:53pm 1

M & W 03:00 – 04:15 p.m. EB 0140 CS 456 Spring 2016

• Your final report must be in PDF format. No exceptions.
• Follow a good coding standard. Use the Google C++ coding standard found here http://goo.gl/
1rC1o, if you don’t already follow one.

• For input, your program should be able to read in a file with the following format: The first line
of your file signifies the knapsack capacity; The subsequent lines lists the weight<space>value of
each item per line. When run, your program should prompt the user to type-in the input file name
(and the path, if not in “./”). Here’s an example input file:

10
5 $10
4 $40
6 $30
3 $50

• For output, produce a file named output.txt. The first line should have the maximum weight. The
second line is a list of all items inputted in the format: weight value. All items should be on the
same line. In addition, it should contain the times of all algorithms, the optimal weight and the
optimal value found for the algorithms. (See example below)

• Total points: [150 points]

Deliverables

The due date of this assignment is Monday, May 2, 2016 @ 02:59:59 p.m. A dropbox will be opened for
submission on Moodle before the due date. A complete solution comprises of:

• [56 points] A report that includes the followings:

– Motivation and background of the experiment. This includes real world examples of this
problem [5 points].

– Pseudocode of your algorithm appropriately annotated with the theoretical runtime analysis.
It is also necessary at this point to provide a detailed description of the various algorithms to
illustrate their similarities and differences including the runtimes of the algorithms[5 points].

– Testing Plan and Test Results. Thoroughly discuss how you intend to generate the input that
will provide you with a full understanding of the characteristics of the algorithms [10 points].

– A correctness proof of your programs [5 points].
– Problems Encountered/Key insights [5 points].
– Justification of your observations. You must be able to justify and/or argue the empirical

asymptotic behavior you are observing. This section should focus on how your experiment’s
timing ran compared to the theoretical expectations [13 points].

– Conclusion and performance comparisons of 3 Optimized Algorithms. This section should
emphasize the differences and similarities between the 3 optimized algorithms based on re-
sults. Attention should be paid to how your testing plan failed or succeeded in enabling
correct conclusions to be drawn from your experiment [13 points].

• [94 points] A compressed tarball of the directory containing your source code and Makefile. Do not
include executables in this tarball; we will do a fresh compile of your code using your Makefile.
To create a compressed tarball of the directory source, use the following command: tar -zcvf
name-111-pr1.tar.gz source/. I will only be using a Linux machine so a zipped Windows file is
not acceptable. Obviously, change the name to your last name and 111 to the last three digits of
your SIUE ID.

last updated: 04/18/16 @ 1:53pm 2

http://goo.gl/1rC1o
http://goo.gl/1rC1o

M & W 03:00 – 04:15 p.m. EB 0140 CS 456 Spring 2016

Bonus Possibility [15 points]

P. 454 of the Levitin book discusses an approximation algorithm for the Knapsack Problem. Implement
this algorithm in your code and run it just like you did the other three. Include in your report:

• What is the characteristic of your input required to generate results closest to optimal? Worst
approximation results?

• Analysis of the algorithm including it’s approximation ratio
• Graphs representing accuracy and time complexity
• Detailed discussion of why and when an approximation algorithm would be useful?

Sample output file

If you chose not to implement the bonus portion, it will not be necessary to include greedy approx,
approximate weight, approximate value, and approximation accuracy in the output file.

output.txt
Maximum Weight: 10

2 2 4 6 6 5 8 1

Exhaustive: 1.4s
Dynamic: .053s
Branch and Bound: .87s
Greedy Approx: .005

Optimal Weight: 10

Optimal Value: 11

Approximate Weight: 6

Approximate Value: 8

Approximation Accuracy: .72

last updated: 04/18/16 @ 1:53pm 3

