Dynamic Programming
I
Dynamic Programming IS a general algorithm design technigue

for solving problems defined By recurrences with overlapping
subproblems

o |nvented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by €S

e “Programming” here means “planning”

o Main idea:

- Set up a recurrence relating a solution to a larger imstance
to solutions ofisome smaller instances

- solve smaller: instances once

- record solutions in a table

- extract solution to the imtial instance from that table

i

i

1id

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Example 1: Bibonacci numiEers
r'rs

L A
o Recall defimition ofi Ribonaccl numbers:

F(n) = F(n-1) + F(n-2)
= (0))p=H0
(1) =1

» Computing the nt Eibonaccl numpber: recursively (top-cdoewn):

()
F(n-1) + F(n-2)
F(n-2) + K(n-3) Fn-3) + K(n-4)
| ‘
- ‘
o A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Example 1: Bibonacci numiEers (cont.)’"
Computing the ntf"Filbonacci number using bottom-up iteration:
and: recording results:

(0) =0
=)=
F(2)=1+0=1

i—'.in-Z) =
F(n-1) =
F(n) = E(n-1) + F(n-2)

= Efficiency:

o - time
-y _ Sbrjav(ifé“lntroduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

i

i

i

Example 2: Coin-row problem
I'rf
There is a row of n coins Whose valtes are some positive inteders ™
C1, Ca;...,Cr, NOL NECESSArily distinct. Iihe goal’is to pick up the
maximum amount of: money: Suject to the constraint that no two
coins adjacent in the mitial row can be picked up.

E.g.: 5 1, 2, 10, 6, 2. \What Is the best selection?

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

[DP solution to the coin-row problem '

[Let F(n) be the maximum amount that can be picked up froni the*
row ofin coins. 1o derive a recurrence for E(n), we partition all
the allowed coin selections 1nto tWo groups:

those without last coin — the max amount Is ?
those with the last coin -- the max amount IS 2

TThus we have the following recurrence
E(n) = max{c,+ E(n-2), F(n-1); forn> 1,

E(0) =0, K(1)=C1

111

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[DP solution to the coin-row problem (cont.)

E(n) = max{c, + E(n-2), E(n-1); forn=> 1,

=(0) =0, F(1)=cs

I

Talo[2)% 0) 1 2% 3 4 3 4
COINS -- 5 il 2 10 6 2
()

Max amount:

Coins of optimal solution:
Time efficiency:
Space efficiency:

iy .
Ty Note: All smaller instances were solved.

m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

111

Example s: Path counting

Consider the problem of
counting the numier of
shortest paths from point A to
poInt B in a city with
perfectly horizontal Streets
and vertical avenues

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rr

i

i

1id

Example 45 Coin-collecting by, robot '

Several coins are placed in cells of an nxm board. Arobot,” = =

located in the upper: left cell'ofithe board, needs to collect as
many. of: the coins as possible and bring them to the bottom right
cell’. Onieach step, the robot can move either one cell'to the right
or: one cell'down fromiits current location.

A. Levitin “Introductioii 1o thie Design & Analysis of AIgoiithims,” Sid €d., Cii. 6 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

111

Solution to the coin-collecting problem’"

[Cet F(i7)) be the largest number: oficoins the robot can collectand
pring to cell'(1;5) 1 the ith row and jth column.

he largest number: of: coins that can be brought to cell (1:]):

from the left neighior: ?
from the neighbor above?

he recurrence:
B)= maodE(=L, g), (5 j=1)F + ¢ for IS isn, 1< jsm
where c;; = Lifithere s a coininicelli(r;j), and ¢;; = 0 otherwise

FO,)=0for 1 <j<m and K(i;0)=0for I << n.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Solution to the coin-collecting problem (cont.)
I'rr

B)= max{E(i=L, g), B(5 j=1)F +¢;; forl< I=n, 1<] <m*®
where c;; = Lifithere is a coinin celli(i;j); and ¢;; = 0 otherwise
FO,)=0for 1 <j<m and K(i;0)=0for I << n.

O
O ()
() ()
O ()
|
‘ A. Levitin “Introduction to tha Degian & Analvsic of Alaorithme ™ 3rd ed, | Ch, 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

i

i

111

Other examples of: DP algorithms
Computing a binomial coefficient (# 9, EXercises 8.1)
General case ofithe change making problem (Sec. 8.1)
Some difficult discrete optimization problems:

- knapsack (Sec. 8.2)
- traveling salesman

Constructing an optimal binary search tree (Sec. 8.3)

Warshall’s algorithm for transitive closure (Sec. 8.4)
Floyd’s algorithm for all-pairs shortest paths (Sec. 8.4)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rr

rra

11

Knapsack Problem by DP
r'rs

Given n items' of S
INnteger Weightss Wy W, ... w,
Values: Vi o ...
a knapsack ofiinteger: capacity \\/

find most valtiable subset of the items that fit into the knapsack

Consider imstance defined by first i items and capacity | (j'= \W).

[-et \/i;j] be optimal value ofisuch instance. Tihen
max {\V[i-1,§], Vi + V[i-L,J- Wi} ifij- Wi = 0

VIl =
i1, f] ifj- W < 0
<=Initial conaditions: V[0,j] = 0" and V{[i;0] =0
:‘ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Knapsack Problem by DR (example) '

rra

Example: Knapsack of capacity W.=5
item_ weight_ value

il 2 $12
2 1 $10
3 3 $20
4 2 $15 capacity |
o0 1 2 3 4 5
0)

w; =2, V=12 1
wW,=1,Vo=10 2
W,=3, V,=20 3

i

i

— = ?
A.Y\elzé’r.tin “In12ro’duvcti4rn to %65 Desié]'n & Analysis of Algorithms,” 3rd ed., Ch. 8 ©20'12 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

| §V)

13

Optimal Binary, Search Trees
r'rs

rVru
Problem: Given n'keys a, <...< a. and probabilities p; = ... <P,

searching for them, find a BST: wathra minimmum
average nNUMPEK oficomparisons in successtul search.

Since total numiber: off BSH's with n'nodes Is given by,
C(2n,n)/(n+1), whichi grows exponentially, brute force 1S hopeless.

Example: What 1s an optimal BSH: for keys A, B, C; and D with
search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

111

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

DP for Optimal BST"Problem
I

[.et CllI,J] be minimum average nUMBEr ofi Comparisons made in
T[i)]; opimal BSTforkeysa; < ...< a;, where 1 < I'< <.
Consider optimal BST among all BSTS with some a, (I< kK=< |)
as their root; THi;j] Is the best among them.

o Cligl =

min {p,.- 1+
I<k<j

K-1
> P (leveliag in k=1 +1) +

S=|

|
> Ps (levelag i T+] +1) ¢
S =k+1

- m
iy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

i

i

i

idd

DP for Optimal BSTProblem (cont.)

After simplifications, We obtain the recurrence for Clif]:

Clujl = n;m{C[lk1]+C[k+1j]}+2pS for1< I< J<n

Clii] = pI f0r1< I< <N

e pemene)2012 Pearson

(ECHOMCS O OTYTT R TR TUTY 1o UT TG0 - -
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

16

Example: key A B C D
probability. 001 0.2 0.4 0.3

[ihe tables below are filled diagonal by dlagonal the left one is filled
using the recurrence
Clij] = min {Cik-1] + Ck+1,jI§ + Z Ps, Cluil=pi;

ISk<| S=I
the right one, for trees’ roots, records k’s values giving the minima
I 0|1 (2 |3 |4 0 (1L |23 |4

| |
1 0|1 |4 11|17 | |2 1 |23 (G}
2 0 |2 |8 |14 |2 2 |3

: 4

Al W W] W

3 0 | 4 [10 3
4 0 | .3 4 :

optimal BST
3 0 5

ALGORITHM OpiimalBST(P[1..n])

//T'inds an optimal binary search tree by dynamic programming
/[[Input: An array P|1..n| of search probabilities for a sorted list of n keys ' ' ’
//Output: Average number of comparisons in successful searches in the
/ optimal BST and table R of subtrees’ roots in the optimal BST
fori — 1tondo
Cli,i —1] <0
Cli, 1]« P[i]
R[i,i]<i
Cln+1,n] <0
for d < 1ton — 1 do //diagonal count
fori < 1ton —ddo
j<i+d
minval « 0o
fork < ito jdo
if Cli, k — 1]+ Clk + 1, j| < minval
minval < C[i, k = 1]+ Clk+ 1, j]: kmin <k
Rli. j] < kmin
sum < Pli]; fors < i +1to j do sum < sum + P|s]
Cli, j] < minval + sum
return C [l n], R

UUU U U C LCOIU Ul AIYU U CU. . O YLV

Education, Inc. Uer Saddle River, NJ. All thts Reserved

Analysis DPfor Optimal BST Problem’"

rra

Time efficiency: O(n3) but can be reduced to O®(n?) by taking
advantage of: monotonicity ofientries in the
root table, 1.e., R[] 1s always in the range
petween R{ij-1] and R{i+1,j]

Space efficiency: ©(n?)

Method can be expended to nclude tnsuccesstul searches

i

i

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Warshall’s Algorithm: Transitive Closu’r;sl

- Computes the transitive closure of a relation
o Alternatively: existence of all nontrivial paths in a digraph

» Example of transitive closure:

0010 0010
1001 1111
0000 0000
0100 1111

<~

4‘

- -y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Warshall’s Algorithm
Irr

Constructs transitive closure T as the last matrix in the sequiénce™
of:n-by-n matrices RO, ..., RW, ..., RO where

R®W[11] = 1 iffithere 1s nontrivial path from i'to j with only first k

vertices allowed as intermediate

Note that R = A (adjacency matrix), RW="T+ (transitive closure)

LR BRA

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

111

Warshall’s Algorithm (recurrence)

rrr

On the k-th iteration, the algorithm determinges for every pair of
vertices I, | If-a path exists from r'and | with just vertices 1.....K
allowed as intermediate

RESDI] (path using just 1 ,....K-1)
RO = or:
R&DIiK] and R&DIK] (path from i to k
and from Kk to |
using just 1 ,...,k-1)

. .
— ~ . .
A
= T 6
- ‘
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Warshall’s Algorithm (matrix generation)
I'rf

Recurrence relating elements R® to elements of R is:

ROl = R&D[ij] or (R&D[i:k] and R&I[k i)

It implies the following rules for: generating R% from RUD:

Rule 1 Ifian element in row i'and column jiis 1 in R&D]
it remains 1 in R®

Rule 2 [f:an element in row tand column jis Oian R,
It has to be changed to 1 in RWifiand only. if
the element i its row irand column k and the element
in its column jand row K are both 1°s in R

i

i

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

i

i

114

Warshall’s Algorithm (example)

8

W__r

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[11.

24

Warshall’s Algorithm (pseudocode and analysis)

I

ALGORITHM Warshall(A[1..n, 1..n])

/Mmplements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with »n vertices
//Output: The transitive closure of the digraph
RO — A
fork < 1tondo
fori < 1ton do
for j < 1tondo
RW[i, j1 < R*V[i, jlor (R*V[i k]and R* D[k, j])
return R

Thime efficiency: ©(n°)

~Space efficiency: Matrices can e Written oVer: thelr Predecessors
-
i A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Floyd’s Algorithm: All pairs shortest paths
rrr

Propblem: Inaweighted (di)graph, find shortest paths between
EVErY pair: Ol VEFTICES

Same idea: construct solution throughi series of matrices D9, ...,
D (W using increasing subsets ofi the vertices allowed

as intermediate

Example: I
| ‘
- ‘
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Floyd’s Algorithm (matrix generation)

rr

On the k-th iteration, the algorithm determines shortest patrvlsv .
PetWeen every pair ol VErtICes I, | that use only Vertices among
1.....,k as intermediate

DOl = min {D&Y]is], DEOfik] + DEDIK 1}

DED[iK]

am

.
.
s
o*

~._. DDk j]
DEDMi TN

i

| ‘
- ‘
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

i

i

114

Floyd’s Algorithm (example)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

[11.

28

Floyd’s Algorithm (pseudocode and analysis)
I'r!

ALGORITHM Floyd(W|[l..n, 1..n])
//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D <« W /fis not necessary if W can be overwritten

fork < 1tondo
fori < 1tondo
for j < 1ton do
D[i, j] < min{D[i, j], D[i, k] + D[k, j]}
return D

Thime efficiency: ©(n°)
Space efficiency: Matrices can e Written oVer thelr Preadecessors

- :\Iote: Shortest paths themselves can be found, too (Problem 10)

|

i A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

