
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Dynamic Programming

Dynamic Programming is a general algorithm design technique
for solving problems defined by recurrences with overlapping
subproblems

• Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Example 1: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

...

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Example 1: Fibonacci numbers (cont.)

Computing the nth Fibonacci number using bottom-up iteration

and recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…

F(n-2) =

F(n-1) =

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Example 2: Coin-row problem

There is a row of n coins whose values are some positive integers

c₁, c₂,...,cn, not necessarily distinct. The goal is to pick up the

maximum amount of money subject to the constraint that no two

coins adjacent in the initial row can be picked up.

E.g.: 5, 1, 2, 10, 6, 2. What is the best selection?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

DP solution to the coin-row problem

Let F(n) be the maximum amount that can be picked up from the

row of n coins. To derive a recurrence for F(n), we partition all

the allowed coin selections into two groups:

those without last coin – the max amount is ?

those with the last coin -- the max amount is ?

Thus we have the following recurrence

F(n) = max{cn + F(n-2), F(n-1)} for n > 1,

F(0) = 0, F(1)=c₁

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

DP solution to the coin-row problem (cont.)

index 0 1 2 3 4 5 6

coins -- 5 1 2 10 6 2

F()

F(n) = max{cn + F(n-2), F(n-1)} for n > 1,

F(0) = 0, F(1)=c₁

Max amount:

Coins of optimal solution:

Time efficiency:

Space efficiency:

Note: All smaller instances were solved.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Example 3: Path counting

Consider the problem of

counting the number of

shortest paths from point A to

point B in a city with

perfectly horizontal streets

and vertical avenues

A

B

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Example 4: Coin-collecting by robot

Several coins are placed in cells of an n×m board. A robot,

located in the upper left cell of the board, needs to collect as

many of the coins as possible and bring them to the bottom right

cell. On each step, the robot can move either one cell to the right

or one cell down from its current location.
1 2 3 4 5 6

1

2

3

4

5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Solution to the coin-collecting problem

Let F(i,j) be the largest number of coins the robot can collect and
bring to cell (i,j) in the ith row and jth column.

The largest number of coins that can be brought to cell (i,j):

from the left neighbor ?

from the neighbor above?

The recurrence:

F(i, j) = max{F(i-1, j), F(i, j-1)} + cij for 1 ≤ i ≤ n, 1 ≤ j ≤ m

where cij = 1 if there is a coin in cell (i,j), and cij = 0 otherwise

F(0, j) = 0 for 1 ≤ j ≤ m and F(i, 0) = 0 for 1 ≤ i ≤ n.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Solution to the coin-collecting problem (cont.)

F(i, j) = max{F(i-1, j), F(i, j-1)} + cij for 1 ≤ i ≤ n, 1 ≤ j ≤ m

where cij = 1 if there is a coin in cell (i,j), and cij = 0 otherwise

F(0, j) = 0 for 1 ≤ j ≤ m and F(i, 0) = 0 for 1 ≤ i ≤ n.

1 2 3 4 5 6

1

2

3

4

5

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Other examples of DP algorithms

• Computing a binomial coefficient (# 9, Exercises 8.1)

• General case of the change making problem (Sec. 8.1)

• Some difficult discrete optimization problems:

- knapsack (Sec. 8.2)

- traveling salesman

• Constructing an optimal binary search tree (Sec. 8.3)

• Warshall’s algorithm for transitive closure (Sec. 8.4)

• Floyd’s algorithm for all-pairs shortest paths (Sec. 8.4)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Knapsack Problem by DP

Given n items of

integer weights: w1 w2 … wn

values: v1 v2 … vn

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j W).

Let V[i,j] be optimal value of such instance. Then

max {V[i-1,j], vi + V[i-1,j- wi]} if j- wi 0
V[i,j] =

V[i-1,j] if j- wi < 0

Initial conditions: V[0,j] = 0 and V[i,0] = 0

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Knapsack Problem by DP (example)

Example: Knapsack of capacity W = 5

item weight value

1 2 $12

2 1 $10

3 3 $20

4 2 $15 capacity j

0 1 2 3 4 5

0

w1 = 2, v1= 12 1

w2 = 1, v2= 10 2

w3 = 3, v3= 20 3

w4 = 2, v4= 15 4 ?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1 ≤ … ≤ pn

searching for them, find a BST with a minimum

average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by

C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with

search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in

T[i,j], optimal BST for keys ai < …< aj , where 1 ≤ i ≤ j ≤ n.

Consider optimal BST among all BSTs with some ak (i ≤ k ≤ j)

as their root; T[i,j] is the best among them.

a

Optimal

BST for

a , ..., a

Optimal

BST for

a , ..., ai

k

k -1 k +1 j

C[i,j] =

min {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

goal0

0

C [i,j]

0

1

n +1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi for 1 ≤ i ≤ j ≤ n
s = i

j

i ≤ k ≤ j

Example: key A B C D

probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled

using the recurrence

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps , C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima

0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i
j

i
j

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Optimal Binary Search Trees

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Analysis DP for Optimal BST Problem

Time efficiency: Θ(n3) but can be reduced to Θ(n2) by taking

advantage of monotonicity of entries in the

root table, i.e., R[i,j] is always in the range

between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expended to include unsuccessful searches

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

4
2

1

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

4
2

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Warshall’s Algorithm

Constructs transitive closure T as the last matrix in the sequence

of n-by-n matrices R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only first k

vertices allowed as intermediate

Note that R(0) = A (adjacency matrix), R(n) = T (transitive closure)

3

42

1
3

42

1
3

42

1

3

42

1

R(0)

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(1)

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(2)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(4)

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

42

1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Warshall’s Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of

vertices i, j if a path exists from i and j with just vertices 1,…,k

allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)

R(k)[i,j] = or

R(k-1)[i,k] and R(k-1)[k,j] (path from i to k

and from k to i

using just 1 ,…,k-1)
i

j

k

{

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1),

it remains 1 in R(k)

Rule 2 If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

Warshall’s Algorithm (example)

3

42

1 0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(0) =

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(1) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(2) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3) =

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

R(4) =

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths

between every pair of vertices i, j that use only vertices among

1,…,k as intermediate

D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

Floyd’s Algorithm (example)

0 ∞ 3 ∞

2 0 ∞ ∞

∞ 7 0 1

6 ∞ ∞ 0

D(0) =

0 ∞ 3 ∞

2 0 5 ∞

∞ 7 0 1

6 ∞ 9 0

D(1) =

0 ∞ 3 ∞

2 0 5 ∞

9 7 0 1

6 ∞ 9 0

D(2) =

0 10 3 4

2 0 5 6

9 7 0 1

6 16 9 0

D(3) =

0 10 3 4

2 0 5 6

7 7 0 1

6 16 9 0

D(4) =

3
1

3

2

6 7

4

1 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 8 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too (Problem 10)

