
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

What is an algorithm?

An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of
time.

“computer”

problem

algorithm

input output

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of equality
gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem
trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Two descriptions of Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value fo the remainder to r
Step 3 Assign the value of n to m and the value of r to n. Go to

Step 1.

while n ≠ 0 do
r ← m mod n
m← n
n ← r

return m

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Other methods for computing gcd(m,n)

Consecutive integer checking algorithm
Step 1 Assign the value of min{m,n} to t
Step 2 Divide m by t. If the remainder is 0, go to Step 3;

otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is 0, return t and stop;

otherwise, go to Step 4
Step 4 Decrease t by 1 and go to Step 2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Other methods for gcd(m,n) [cont.]

Middle-school procedure
Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common prime factors

and return it as gcd(m,n)

Is this an algorithm?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Sieve of Eratosthenes
Input: Integer n ≥ 2
Output: List of primes less than or equal to n
for p ← 2 to n do A[p] ← p
for p ← 2 to n do

if A[p]  0 //p hasn’t been previously eliminated from the list
j ← p* p
while j ≤ n do

A[j] ← 0 //mark element as eliminated

j ← j + p

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Why study algorithms?

 Theoretical importance

• the core of computer science

 Practical importance

• A practitioner’s toolkit of known algorithms

• Framework for designing and analyzing algorithms for
new problems

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Two main issues related to algorithms

 How to design algorithms

 How to analyze algorithm efficiency

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Algorithm design techniques/strategies

 Brute force

 Divide and conquer

 Decrease and conquer

 Transform and conquer

 Space and time tradeoffs

 Greedy approach

 Dynamic programming

 Iterative improvement

 Backtracking

 Branch and bound

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Analysis of algorithms

 How good is the algorithm?
• time efficiency
• space efficiency

 Does there exist a better algorithm?
• lower bounds
• optimality

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Important problem types

 sorting

 searching

 string processing

 graph problems

 combinatorial problems

 geometric problems

 numerical problems

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Fundamental data structures

 list

• array

• linked list

• string

 stack

 queue

 priority queue

 graph

 tree

 set and dictionary

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Analysis of algorithms

 Issues:
• correctness
• time efficiency
• space efficiency
• optimality

 Approaches:
• theoretical analysis
• empirical analysis

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size

 Basic operation: the operation that contributes most
towards the running time of the algorithm

T(n) ≈ copC(n)
running time execution time

for basic operation
Number of times
basic operation is

executed

input size

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Input size and basic operation examples

Problem Input size measure Basic operation

Searching for key in a
list of n items

Number of list’s items,
i.e. n Key comparison

Multiplication of two
matrices

Matrix dimensions or
total number of elements

Multiplication of two
numbers

Checking primality of
a given integer n

n’size = number of digits
(in binary representation) Division

Typical graph problem #vertices and/or edges Visiting a vertex or
traversing an edge

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Empirical analysis of time efficiency

 Select a specific (typical) sample of inputs

 Use physical unit of time (e.g., milliseconds)
or

Count actual number of basic operation’s executions

 Analyze the empirical data

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

 Worst case: Cworst(n) – maximum over inputs of size n

 Best case: Cbest(n) – minimum over inputs of size n

 Average case: Cavg(n) – “average” over inputs of size n
• Number of times the basic operation will be executed on typical input
• NOT the average of worst and best case
• Expected number of basic operations considered as a random variable

under some assumption about the probability distribution of all
possible inputs

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Example: Sequential search

 Worst case

 Best case

 Average case

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Types of formulas for basic operation’s count

 Exact formula
e.g., C(n) = n(n-1)/2

 Formula indicating order of growth with specific
multiplicative constant

e.g., C(n) ≈ 0.5 n2

 Formula indicating order of growth with unknown
multiplicative constant

e.g., C(n) ≈ cn2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Order of growth

 Most important: Order of growth within a constant multiple
as n→∞

 Example:
• How much faster will algorithm run on computer that is

twice as fast?

• How much longer does it take to solve problem of double
input size?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Values of some important functions as n 

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Asymptotic order of growth

A way of comparing functions that ignores constant factors and
small input sizes

 O(g(n)): class of functions f(n) that grow no faster than g(n)

 Θ(g(n)): class of functions f(n) that grow at same rate as g(n)

 Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Big-oh

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Big-omega

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Big-theta

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤ order
of growth of g(n) (within constant multiple),
i.e., there exist positive constant c and non-negative integer
n0 such that

f(n) ≤ c g(n) for every n ≥ n0

Examples:
 10n is O(n2)

 5n+20 is O(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

Some properties of asymptotic order of growth

 f(n)  O(f(n))

 f(n)  O(g(n)) iff g(n) (f(n))

 If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n)  O(h(n))

Note similarity with a ≤ b

 If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then
f1(n) + f2(n)  O(max{g1(n), g2(n)})

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Establishing order of growth using limits

lim T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

Examples:
• 10n vs. n2

• n(n+1)/2 vs. n2

n→∞

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

L’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule: If limn f(n) = limn g(n) =  and
the derivatives f´, g´ exist, then

Stirling’s formula: n!  (2n)1/2 (n/e)n

f(n)
g(n)

lim
n

=
f ´(n)
g ´(n)

lim
n

Example: log n vs. n

Example: 2n vs. n!

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Orders of growth of some important functions

 All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

 All polynomials of the same degree k belong to the same class:
aknk + ak-1nk-1 + … + a0  (nk)

 Exponential functions an have different orders of growth for
different a’s

 order log n < order n (>0) < order an < order n! < order nn

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Basic asymptotic efficiency classes

1 constant

log n logarithmic

n linear

n log n n-log-n or linearithmic

n2 quadratic

n3 cubic

2n exponential

n! factorial

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Time efficiency of nonrecursive algorithms

General Plan for Analysis

 Decide on parameter n indicating input size

 Identify algorithm’s basic operation

 Determine worst, average, and best cases for input of size n

 Set up a sum for the number of times the basic operation is
executed

 Simplify the sum using standard formulas and rules (see
Appendix A)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Useful summation formulas and rules

liu1 = 1+1+ ⋯ +1 = u - l + 1
In particular, liu1 = n - 1 + 1 = n  (n)

1in i = 1+2+ ⋯ +n = n(n+1)/2  n2/2  (n2)

1in i2 = 12+22+ ⋯ +n2 = n(n+1)(2n+1)/6  n3/3  (n3)

0in ai = 1 + a + ⋯ + an = (an+1 - 1)/(a - 1) for any a  1
In particular, 0in 2i = 20 + 21 + ⋯ + 2n = 2n+1 - 1  (2n)

(ai ± bi) = ai ± bi cai = cai liuai = limai + m+1iuai

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Example 1: Maximum element

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Example 2: Element uniqueness problem

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

Example 3: Matrix multiplication

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1,0..n])
//Implements Gaussian elimination of an n-by-(n+1) matrix A
for i  0 to n - 2 do

for j  i + 1 to n - 1 do
for k  i to n do

A[j,k]  A[j,k] - A[i,k]  A[j,i] / A[i,i]

Find the efficiency class and a constant factor improvement.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Example 5: Counting binary digits

It cannot be investigated the way the previous examples are.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Plan for Analysis of Recursive Algorithms

 Decide on a parameter indicating an input’s size.

 Identify the algorithm’s basic operation.

 Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

 Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

 Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

Example 1: Recursive evaluation of n!

Definition: n ! = 1  2  …  (n-1)  n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1)  n for n ≥ 1 and
F(0) = 1

Size:
Basic operation:
Recurrence relation:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

Example 2: The Tower of Hanoi Puzzle

1

2

3

Recurrence for number of moves:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 31

Solving recurrence for number of moves

M(n) = 2M(n-1) + 1, M(1) = 1

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 32

Tree of calls for the Tower of Hanoi Puzzle

 n

n -1 n -1

n -2 n -2 n -2 n -2

1 1

...
2

1 1

2

1 1

2

1 1

2

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 33

Example 3: Counting #bits

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 34

Fibonacci numbers

The Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, …

The Fibonacci recurrence:
F(n) = F(n-1) + F(n-2)
F(0) = 0
F(1) = 1

General 2nd order linear homogeneous recurrence with
constant coefficients:

aX(n) + bX(n-1) + cX(n-2) = 0

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 35

Solving aX(n) + bX(n-1) + cX(n-2) = 0

 Set up the characteristic equation (quadratic)
ar2 + br + c = 0

 Solve to obtain roots r1 and r2

 General solution to the recurrence
if r1 and r2 are two distinct real roots: X(n) = αr1

n + βr2
n

if r1 = r2 = r are two equal real roots: X(n) = αrn + βnr n

 Particular solution can be found by using initial conditions

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 36

Application to the Fibonacci numbers

F(n) = F(n-1) + F(n-2) or F(n) - F(n-1) - F(n-2) = 0

Characteristic equation:

Roots of the characteristic equation:

General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2

©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 37

Computing Fibonacci numbers

1. Definition-based recursive algorithm

2. Nonrecursive definition-based algorithm

3. Explicit formula algorithm

4. Logarithmic algorithm based on formula:

F(n-1) F(n)

F(n) F(n+1)

0 1
1 1

=
n

for n≥1, assuming an efficient way of computing matrix powers.

	WK01.0
	WK01.1

