
11.1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 11

Message Integrity

and

Message Authentication



11.2

Objectives

❏ To define message integrity

❏ To define message authentication

❏ To define criteria for a cryptographic hash function

❏ To define the Random Oracle Model and its role in

evaluating the security of cryptographic hash

functions

❏ To distinguish between an MDC and a MAC

❏ To discuss some common MACs

Chapter 11



11.3

11-1   MESSAGE INTEGRITY

The cryptography systems that we have studied so far

provide secrecy, or confidentiality, but not integrity.

However, there are occasions where we may not even

need secrecy but instead must have integrity.

11.1 Document and Fingerprint

11.2 Message and Message Digest

11.3 Difference

11.4 Checking Integrity

11.5 Cryptographic Hash Function Criteria

Topics discussed in this section:



11.4

One way to preserve the integrity of a document is

through the use of a fingerprint. If Alice needs to be sure

that the contents of her document will not be changed,

she can put her fingerprint at the bottom of the document.

11.1.1  Document and Fingerprint



11.5

The electronic equivalent of the document and fingerprint

pair is the message and digest pair.

11.1.2  Message and Message Digest

Figure 11.1  Message and digest



11.6

The two pairs (document / fingerprint) and (message /

message digest) are similar, with some differences. The

document and fingerprint are physically linked together.

The message and message digest can be unlinked

separately, and, most importantly, the message digest

needs to be safe from change.

11.1.3  Difference

The message digest needs to be safe from change.

Note



11.7

11.1.4  Checking Integrity

Figure 11.2  Checking integrity



11.8

A cryptographic hash function must satisfy three criteria:

preimage resistance, second preimage resistance, and

collision resistance.

11.1.5  Cryptographic Hash Function Criteria

Figure 11.3  Criteria of a cryptographic hash function



11.9

Preimage Resistance

11.1.5  Continued

Figure 11.4  Preimage



11.10

11.1.5 Continued

Can we use a conventional lossless compression method such as

StuffIt as a cryptographic hash function?

Example 11.1

Solution

We cannot. A lossless compression method creates a compressed

message that is reversible.

Can we use a checksum function as a cryptographic hash

function?

Example 11.2

Solution

We cannot. A checksum function is not preimage resistant, Eve

may find several messages whose checksum matches the given one.



11.11

Second Preimage Resistance

11.1.5  Continued

Figure 11.5  Second preimage



11.12

Collision Resistance

11.1.5  Continued

Figure 11.6  Collision



11.13

11-2   RANDOM ORACLE MODEL

The Random Oracle Model, which was introduced in

1993 by Bellare and Rogaway, is an ideal

mathematical model for a hash function.

11.2.1 Pigeonhole Principle

11.2.2 Birthday Problems

11.2.3 Attacks on Random Oracle Model

11.2.4 Attacks on the Structure

Topics discussed in this section:



11.14

11-2   Continued

Assume an oracle with a table and a fair coin. The table has two

columns.

Example 11.3

a. The message AB1234CD8765BDAD is given for digest calculation.

The oracle checks its table.



11.15

11-2   Continued

Example 11.3 Continued

b. The message 4523AB1352CDEF45126 is given for digest

calculation. The oracle checks its table and finds that there is a digest

for this message in the table (first row). The oracle simply gives the

corresponding digest (13AB).



11.16

11-2   Continued

The oracle in Example 11.3 cannot use a formula or algorithm to

create the digest for a message. For example, imagine the oracle

uses the formula h(M) = M mod n. Now suppose that the oracle

has already given h(M1) and h(M2). If a new message is presented

as M3 = M1 + M2, the oracle does not have to calculate the h(M3).

The new digest is just [h(M1) + h(M2)] mod n since

Example 11.4

This violates the third requirement that each digest must be

randomly chosen based on the message given to the oracle.



11.17

If n pigeonholes are occupied by n + 1 pigeons, then at

least one pigeonhole is occupied by two pigeons. The

generalized version of the pigeonhole principle is that if n

pigeonholes are occupied by kn + 1 pigeons, then at least

one pigeonhole is occupied by k + 1 pigeons.

11.2.1  Pigeonhole Principle



11.18

11.2.1  Continued

Assume that the messages in a hash function are 6 bits long and

the digests are only 4 bits long. Then the possible number of

digests (pigeonholes) is 24 = 16, and the possible number of

messages (pigeons) is 26 = 64. This means n = 16 and kn + 1 = 64,

so k is larger than 3. The conclusion is that at least one digest

corresponds to four (k + 1) messages.

Example 11.5



11.19

11.2.2  Birthday Problems

Figure 11.7  Four birthday problems



11.20

Summary of Solutions

Solutions to these problems are given in Appendix E for

interested readers; The results are summarized in Table

11.3.

11.2.2  Continued



11.21

Comparison

11.2.2  Continued

Figure 11.8  Graph of four birthday problem



11.22

11.2.3  Attacks on Random Oracle Model

Preimage Attack



11.23

11.2.3  Continued

A cryptographic hash function uses a digest of 64 bits. How many

digests does Eve need to create to find the original message with

the probability more than 0.5?

Example 11.6

Solution

The number of digests to be created is k ≈ 0.69 × 2n ≈ 0.69 × 264.

This is a large number. Even if Eve can create 230 (almost one

billion) messages per second, it takes 0.69 × 234 seconds or more

than 500 years. This means that a message digest of size 64 bits is

secure with respect to preimage attack, but, as we will see shortly,

is not secured to collision attack.



11.24

Second Preimage Attack.

11.2.3  Continued



11.25

Collision Attack

11.2.3  Continued



11.26

11.2.3  Continued

A cryptographic hash function uses a digest of 64 bits. How many

digests does Eve need to create to find two messages with the same

digest with the probability more than 0.5?

Example 11.7

Solution

The number of digests to be created is k ≈ 1.18 × 2n/2 ≈ 1.18 × 232.

If Eve can test 220 (almost one million) messages per second, it

takes 1.18 × 212 seconds, or less than two hours. This means that a

message digest of size 64 bits is not secure against the collision

attack.



11.27

Alternate Collision Attack

11.2.3  Continued



11.28

Summary of Attacks

Table 11.4 shows the level of difficulty for each attack if the digest

is n bits.

11.2.3  Continued



11.29

11.2.3  Continued

Originally hash functions with a 64-bit digest were believed to be

immune to collision attacks. But with the increase in the

processing speed, today everyone agrees that these hash functions

are no longer secure. Eve needs only 264/2 = 232 tests to launch an

attack with probability 1/2 or more. Assume she can perform 220

(one million) tests per second. She can launch an attack in

232/220 = 212 seconds (almost an hour).

Example 11.8



11.30

11.2.3  Continued

MD5 (see Chapter 12), which was one of the standard hash

functions for a long time, creates digests of 128 bits. To launch a

collision attack, the adversary needs to test 264 (2128/2) tests in the

collision algorithm. Even if the adversary can perform 230 (more

than one billion) tests in a second, it takes 234 seconds (more than

500 years) to launch an attack. This type of attack is based on the

Random Oracle Model. It has been proved that MD5 can be

attacked on less than 264 tests because of the structure of the

algorithm.

Example 11.9



11.31

11.2.3  Continued

SHA-1 (see Chapter 12), a standard hash function developed by

NIST, creates digests of 160 bits. The function is attacks. To

launch a collision attack, the adversary needs to test 2160/2 = 280

tests in the collision algorithm. Even if the adversary can perform

230 (more than one billion) tests in a second, it takes 250 seconds

(more than ten thousand years) to launch an attack. However,

researchers have discovered some features of the function that

allow it to be attacked in less time than calculated above.

Example 11.10



11.32

11.2.3  Continued

The new hash function, that is likely to become NIST standard, is

SHA-512 (see Chapter 12), which has a 512-bit digest. This

function is definitely resistant to collision attacks based on the

Random Oracle Model. It needs 2512/2 = 2256 tests to find a collision

with the probability of 1/2.

Example 11.11



11.33

The adversary may have other tools to attack hash

function. One of these tools, for example, is the meet-in-

the-middle attack that we discussed in Chapter 6 for

double DES.

11.2.4  Attacks on the Structure



11.34

11-3   MESSAGE AUTHENTICATION

A message digest does not authenticate the sender of

the message. To provide message authentication, Alice

needs to provide proof that it is Alice sending the

message and not an impostor. The digest created by a

cryptographic hash function is normally called a

modification detection code (MDC). What we need for

message authentication is a message authentication

code (MAC).

11.3.1 Modification Detection Code (MDC)

11.3.2 Message Authentication Code (MAC)

Topics discussed in this section:



11.35

A modification detection code (MDC) is a message digest

that can prove the integrity of the message: that message

has not been changed. If Alice needs to send a message to

Bob and be sure that the message will not change during

transmission, Alice can create a message digest, MDC,

and send both the message and the MDC to Bob. Bob can

create a new MDC from the message and compare the

received MDC and the new MDC. If they are the same,

the message has not been changed.

11.3.1  Modification Detection Code (MDC)



11.36

11.3.1  Continued

Figure 11.9  Modification detection code (MDC)



11.37

11.3.2  Message Authentication Code (MAC)

Figure 11.10  Message authentication code



11.38

11.3.2  Continued

The security of a MAC depends on the security of 

the underlying hash algorithm.

Note



11.39

Nested MAC

11.3.2  Continued

Figure 11.11  Nested MAC



11.40

HMAC

11.3.2  Continued

Figure 11.12  
Details of HMAC



11.41

11.3.2  Continued

Figure 11.13  CMAC


