Cryptography and Network Security

Behrouz Forouzan

Chapter 15 Diffie-Hellman

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15-3 SYMMETRIC-KEY AGREEMENT

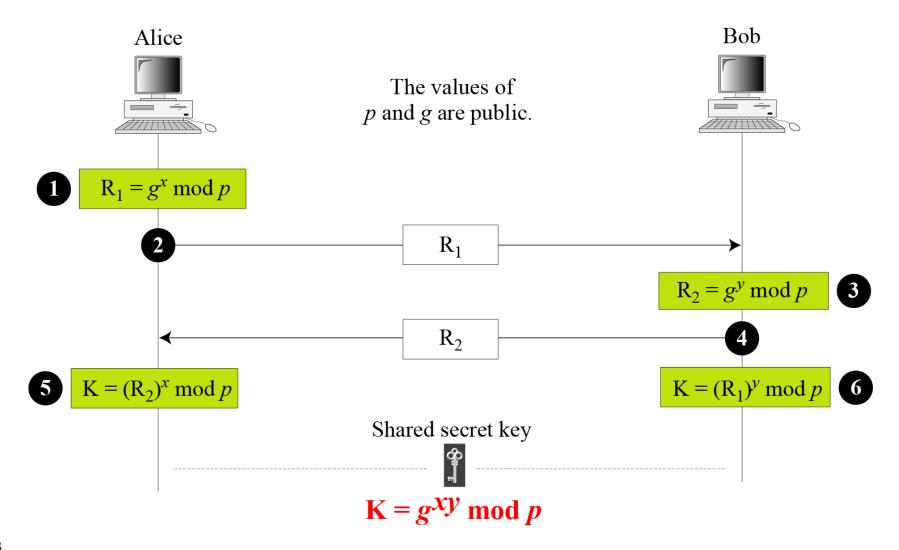
Alice and Bob can create a session key between themselves without using a KDC. This method of session-key creation is referred to as the symmetrickey agreement.

Topics discussed in this section:

15.3.1 Diffie-Hellman Key Agreement15.3.2 Station-to-Station Key Agreement

15.3.1 Diffie-Hellman Key Agreement

Figure 15.9 Diffie-Hellman method



The symmetric (shared) key in the Diffie-Hellman method is $K = g^{xy} \mod p$.

Example 15.1

Let us give a trivial example to make the procedure clear. Our example uses small numbers, but note that in a real situation, the numbers are very large. Assume that g = 7 and p = 23. The steps are as follows:

- 1. Alice chooses x = 3 and calculates $R_1 = 73 \mod 23 = 21$.
- 2. Bob chooses y = 6 and calculates $R_2 = 76 \mod 23 = 4$.
- 3. Alice sends the number 21 to Bob.
- 4. Bob sends the number 4 to Alice.
- 5. Alice calculates the symmetric key $K = 43 \mod 23 = 18$.
- 6. Bob calculates the symmetric key $K = 216 \mod 23 = 18$.
- 7. The value of K is the same for both Alice and Bob; $g^{xy} \mod p = 718 \mod 35 = 18.$

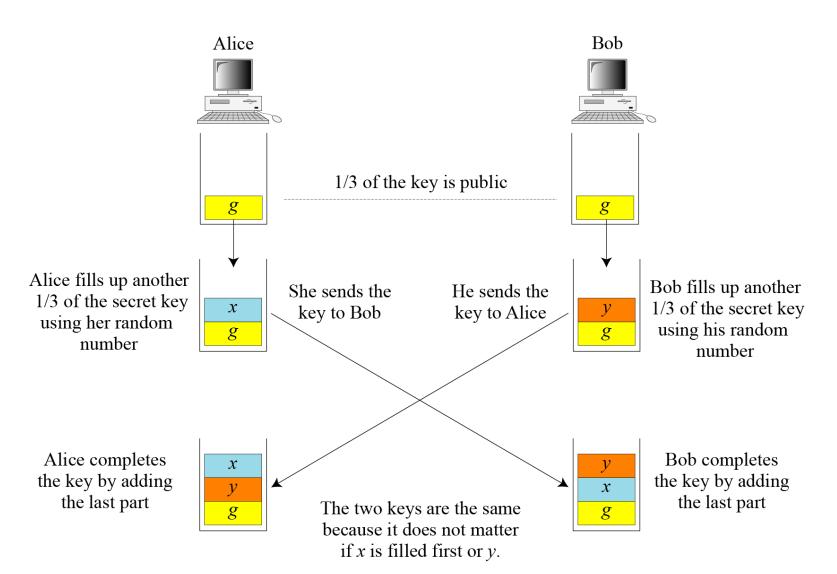
Let us give a more realistic example. We used a program to create a random integer of 512 bits (the ideal is 1024 bits). The integer pis a 159-digit number. We also choose g, x, and y as shown below:

р	764624298563493572182493765955030507476338096726949748923573772860925 235666660755423637423309661180033338106194730130950414738700999178043 6548785807987581
g	2
x	557
у	273

The following shows the values of R_1 , R_2 , and K.

R ₁	844920284205665505216172947491035094143433698520012660862863631067673 619959280828586700802131859290945140217500319973312945836083821943065 966020157955354
R ₂	435262838709200379470747114895581627636389116262115557975123379218566 310011435718208390040181876486841753831165342691630263421106721508589 6255201288594143
K	155638000664522290596225827523270765273218046944423678520320400146406 500887936651204257426776608327911017153038674561252213151610976584200 1204086433617740

Figure 15.10 *Diffie-Hellman idea*

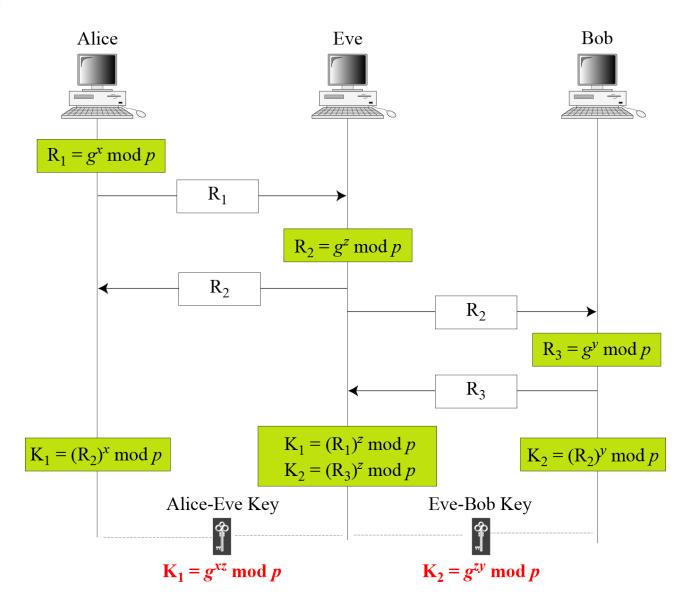


Security of Diffie-Hellman

Discrete Logarithm Attack

Man-in-the-Middle Attack

Figure 15.11 Man-in-the-middle attack



15.3.2 Station-to-Station Key Agreement

Figure 15.12 Station-to-station key agreement method

