
June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-1

Chapter 5: Confidentiality 
Policies

• Overview
– What is a confidentiality model

• Bell-LaPadula Model
– General idea
– Informal description of rules
– Formal description of rules

• Tranquility
• Controversy

– †-property
– System Z



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-2

Overview

• Bell-LaPadula
– Informally
– Formally
– Example Instantiation

• Tranquility
• Controversy

– System Z



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-3

Confidentiality Policy

• Goal: prevent the unauthorized disclosure of 
information
– Deals with information flow
– Integrity incidental

• Multi-level security models are best-known 
examples
– Bell-LaPadula Model basis for many, or most, 

of these



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-4

Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

• Levels consist of security clearance L(s)
– Objects have security classification L(o)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-5

Example

security level subject object

Top Secret Tamara Personnel Files

Secret Samuel E-Mail Files

Confidential Claire Activity Logs

Unclassified Ulaley Telephone Lists

• Tamara can read all files
• Claire cannot read Personnel or E-Mail Files
• Ulaley can only read Telephone Lists



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-6

Reading Information

• Information flows up, not down
– “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ≤ L(s) and s

has permission to read o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no reads up” rule



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-7

Writing Information

• Information flows up, not down
– “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
– Subject s can write object o iff L(s) ≤ L(o) and s

has permission to write o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no writes down” rule



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-8

Basic Security Theorem, Step 1

• If a system is initially in a secure state, and 
every transition of the system satisfies the 
simple security condition, step 1, and the *-
property, step 1, then every state of the 
system is secure
– Proof: induct on the number of transitions



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-9

Bell-LaPadula Model, Step 2

• Expand notion of security level to include 
categories

• Security level is (clearance, category set)
• Examples

– ( Top Secret, { NUC, EUR, ASI } )
– ( Confidential, { EUR, ASI } )
– ( Secret, { NUC, ASI } )



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-10

Levels and Lattices

• (A, C) dom (A′, C′) iff A′ ≤ A and C′ ⊆ C
• Examples

– (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
– (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
– (Top Secret, {NUC}) ¬dom (Confidential, {EUR})

• Let C be set of classifications, K set of categories. 
Set of security levels L = C × K, dom form lattice
– lub(L) = (max(A), C)
– glb(L) = (min(A), ∅)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-11

Levels and Ordering

• Security levels partially ordered
– Any pair of security levels may (or may not) be 

related by dom
• “dominates” serves the role of “greater 

than” in step 1
– “greater than” is a total ordering, though



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-12

Reading Information

• Information flows up, not down
– “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 2)
– Subject s can read object o iff L(s) dom L(o) 

and s has permission to read o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no reads up” rule



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-13

Writing Information

• Information flows up, not down
– “Writes up” allowed, “writes down” disallowed

• *-Property (Step 2)
– Subject s can write object o iff L(o) dom L(s) 

and s has permission to write o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no writes down” rule



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-14

Basic Security Theorem, Step 2

• If a system is initially in a secure state, and every 
transition of the system satisfies the simple 
security condition, step 2, and the *-property, step 
2, then every state of the system is secure
– Proof: induct on the number of transitions
– In actual Basic Security Theorem, discretionary access 

control treated as third property, and simple security 
property and *-property phrased to eliminate 
discretionary part of the definitions — but simpler to 
express the way done here.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-15

Problem

• Colonel has (Secret, {NUC, EUR}) 
clearance

• Major has (Secret, {EUR}) clearance
– Major can talk to colonel (“write up” or “read 

down”)
– Colonel cannot talk to major (“read up” or 

“write down”)
• Clearly absurd!



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-16

Solution

• Define maximum, current levels for subjects
– maxlevel(s) dom curlevel(s)

• Example
– Treat Major as an object (Colonel is writing to him/her)
– Colonel has maxlevel (Secret, { NUC, EUR })
– Colonel sets curlevel to (Secret, { EUR })
– Now L(Major) dom curlevel(Colonel)

• Colonel can write to Major without violating “no writes down”
– Does L(s) mean curlevel(s) or maxlevel(s)?

• Formally, we need a more precise notation



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-17

DG/UX System

• Provides mandatory access controls
– MAC label identifies security level
– Default labels, but can define others

• Initially
– Subjects assigned MAC label of parent

• Initial label assigned to user, kept in Authorization and 
Authentication database

– Object assigned label at creation
• Explicit labels stored as part of attributes
• Implicit labels determined from parent directory



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-18

MAC Regions

Administrative RegionA&A database, audit

User data and applications User RegionHierarchy
levels

VP–1
VP–2
VP–3
VP–4

Site executables
Trusted data
Executables not part of the TCB

Reserved for future use

Virus Prevention Region

Categories
VP–5

Executables part of the TCB

IMPL_HI is “maximum” (least upper bound) of all levels
IMPL_LO is “minimum” (greatest lower bound) of all levels



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-19

Directory Problem

• Process p at MAC_A tries to create file /tmp/x
• /tmp/x exists but has MAC label MAC_B

– Assume MAC_B dom MAC_A
• Create fails

– Now p knows a file named x with a higher label exists
• Fix: only programs with same MAC label as 

directory can create files in the directory
– Now compilation won’t work, mail can’t be delivered



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-20

Multilevel Directory

• Directory with a set of subdirectories, one per 
label
– Not normally visible to user
– p creating /tmp/x actually creates /tmp/d/x where d is 

directory corresponding to MAC_A
– All p’s references to /tmp go to /tmp/d

• p cd’s to /tmp/a, then to ..
– System call stat(“.”, &buf) returns inode number of real 

directory
– System call dg_stat(“.”, &buf) returns inode of /tmp



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-21

Object Labels

• Requirement: every file system object 
must have MAC label

1. Roots of file systems have explicit MAC 
labels
• If mounted file system has no label, it gets 

label of mount point
2. Object with implicit MAC label inherits 

label of parent



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-22

Object Labels

• Problem: object has two names
– /x/y/z, /a/b/c refer to same object
– y has explicit label IMPL_HI
– b has explicit label IMPL_B

• Case 1: hard link created while file system on 
DG/UX system, so …

3. Creating hard link requires explicit label
• If implicit, label made explicit
• Moving a file makes label explicit



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-23

Object Labels

• Case 2: hard link exists when file system 
mounted

– No objects on paths have explicit labels: paths have 
same implicit labels

– An object on path acquires an explicit label: implicit 
label of child must be preserved

so …
4. Change to directory label makes child labels 

explicit before the change



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-24

Object Labels

• Symbolic links are files, and treated as 
such, so …

5. When resolving symbolic link, label of 
object is label of target of the link

• System needs access to the symbolic link 
itself



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-25

Using MAC Labels

• Simple security condition implemented
• *-property not fully implemented

– Process MAC must equal object MAC
– Writing allowed only at same security level

• Overly restrictive in practice



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-26

MAC Tuples

• Up to 3 MAC ranges (one per region)
• MAC range is a set of labels with upper, lower 

bound
– Upper bound must dominate lower bound of range

• Examples
1. [(Secret, {NUC}), (Top Secret, {NUC})]
2. [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
3. [(Confidential, {ASI}), (Secret, {NUC, ASI})]



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-27

MAC Ranges

1. [(Secret, {NUC}), (Top Secret, {NUC})]
2. [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
3. [(Confidential, {ASI}), (Secret, {NUC, ASI})]
• (Top Secret, {NUC}) in ranges 1, 2
• (Secret, {NUC, ASI}) in ranges 2, 3
• [(Secret, {ASI}), (Top Secret, {EUR})] not valid 

range
– as (Top Secret, {EUR}) ¬dom (Secret, {ASI})



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-28

Objects and Tuples

• Objects must have MAC labels
– May also have MAC label
– If both, tuple overrides label

• Example
– Paper has MAC range:

[(Secret, {EUR}), (Top Secret, {NUC, EUR})]



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-29

MAC Tuples

• Process can read object when:
– Object MAC range (lr, hr); process MAC label pl
– pl dom hr

• Process MAC label grants read access to upper bound of range

• Example
– Peter, with label (Secret, {EUR}), cannot read paper

• (Top Secret, {NUC, EUR}) dom (Secret, {EUR})
– Paul, with label (Top Secret, {NUC, EUR, ASI}) can read 

paper
• (Top Secret, {NUC, EUR, ASI}) dom (Top Secret, {NUC, EUR})



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-30

MAC Tuples

• Process can write object when:
– Object MAC range (lr, hr); process MAC label pl
– pl ∈ (lr, hr)

• Process MAC label grants write access to any label in range

• Example
– Peter, with label (Secret, {EUR}), can write paper

• (Top Secret, {NUC, EUR}) dom (Secret, {EUR}) and (Secret, 
{EUR}) dom (Secret, {EUR})

– Paul, with label (Top Secret, {NUC, EUR, ASI}), cannot 
read paper

• (Top Secret, {NUC, EUR, ASI}) dom (Top Secret, {NUC, EUR})



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-31

Formal Model Definitions

• S subjects, O objects, P rights
– Defined rights: r read, a write, w read/write, e empty

• M set of possible access control matrices
• C set of clearances/classifications, K set of 

categories, L = C × K set of security levels
• F = { ( fs, fo, fc) }

– fs(s) maximum security level of subject s
– fc(s) current security level of subject s
– fo(o) security level of object o



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-32

More Definitions

• Hierarchy functions H: O→P(O)
• Requirements

1. oi ≠ oj ⇒ h(oi ) ∩ h(oj ) = ∅
2. There is no set { o1, …, ok } ⊆ O such that, for i = 1, 

…, k, oi+1 ∈h(oi ) and ok+1 = o1.
• Example

– Tree hierarchy; take h(o) to be the set of children of o
– No two objects have any common children (#1)
– There are no loops in the tree (#2)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-33

States and Requests

• V set of states
– Each state is (b, m, f, h)

• b is like m, but excludes rights not allowed by f

• R set of requests for access
• D set of outcomes

– y allowed, n not allowed, i illegal, o error
• W set of actions of the system

– W ⊆ R × D × V × V



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-34

History

• X = RN set of sequences of requests
• Y = DN set of sequences of decisions
• Z = VN set of sequences of states
• Interpretation

– At time t ∈ N, system is in state zt–1 ∈ V; request xt ∈ R
causes system to make decision yt ∈ D, transitioning the 
system into a (possibly new) state zt ∈ V

• System representation: Σ(R, D, W, z0) ∈ X × Y × Z
– (x, y, z) ∈ Σ(R, D, W, z0) iff (xt, yt, zt–1, zt) ∈ W for all t
– (x, y, z) called an appearance of Σ(R, D, W, z0)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-35

Example

• S = { s }, O = { o }, P = { r, w }
• C = { High, Low }, K = { All }
• For every f ∈ F, either  fc(s) = ( High, { All }) or 

fc(s) = ( Low, { All })
• Initial State:

– b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and 
for f1 ∈ F, fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})

– Call this state v0 = (b1, m1, f1, h1) ∈ V.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-36

First Transition

• Now suppose in state v0: S = { s, s′ }
• Suppose fc,1(s′) = (Low, {All})
• m1 ∈ M gives s and s′ read access over o
• As s′ not written to o, b1 = { (s, o, r) }
• z0 = v0; if s′ requests r1 to write to o:

– System decides d1 = y
– New state v1 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }
– Here, x = (r1), y = (y), z = (v0, v1)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-37

Second Transition

• Current state v1 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }
– fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })

• s´ requests r2 to write to o:
– System decides d2 = n (as fc,1(s) dom fo,1(o))
– New state v2 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }
– So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-38

Basic Security Theorem

• Define action, secure formally
– Using a bit of foreshadowing for “secure”

• Restate properties formally
– Simple security condition
– *-property
– Discretionary security property

• State conditions for properties to hold
• State Basic Security Theorem



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-39

Action

• A request and decision that causes the system to 
move from one state to another
– Final state may be the same as initial state

• (r, d, v, v′) ∈ R × D × V × V is an action of Σ(R, D, 
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a 
t ∈ N such that (r, d, v, v′) = (xt, yt, zt, zt–1)
– Request r made when system in state v; decision d

moves system into (possibly the same) state v′
– Correspondence with (xt, yt, zt, zt–1) makes states, 

requests, part of a sequence



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-40

Simple Security Condition

• (s, o, p) ∈ S × O × P satisfies the simple security 
condition relative to f (written ssc rel f) iff one of 
the following holds:

1. p = e or p = a
2. p = r or p = w and fs(s) dom fo(o)

• Holds vacuously if rights do not involve reading
• If all elements of b satisfy ssc rel f, then state 

satisfies simple security condition
• If all states satisfy simple security condition, 

system satisfies simple security condition



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-41

Necessary and Sufficient

• Σ(R, D, W, z0) satisfies the simple security 
condition for any secure state z0 iff for every 
action (r, d, (b, m, f, h), (b′, m′, f′, h′)), W satisfies
– Every (s, o, p) ∈ b – b′ satisfies ssc rel f
– Every (s, o, p) ∈ b′ that does not satisfy ssc rel f is not 

in b
• Note: “secure” means z0 satisfies ssc rel f
• First says every (s, o, p) added satisfies ssc rel f; 

second says any (s, o, p) in b′ that does not satisfy 
ssc rel f is deleted



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-42

*-Property
• b(s: p1, …, pn) set of all objects that s has p1, …, pn

access to
• State (b, m, f, h) satisfies the *-property iff for each s ∈ S 

the following hold:
1. b(s: a) ≠ ∅⇒ [∀o ∈b(s: a) [ fo(o) dom fc(s) ] ]
2. b(s: w) ≠ ∅⇒ [∀o ∈b(s: w) [ fo(o) = fc(s) ] ]
3. b(s: r) ≠ ∅⇒ [∀o ∈b(s: r) [ fc(s) dom fo(o) ] ]

• Idea: for writing, object dominates subject; for reading, 
subject dominates object



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-43

*-Property

• If all states satisfy simple security condition, 
system satisfies simple security condition

• If a subset S′ of subjects satisfy *-property, then *-
property satisfied relative to S′ ⊆ S

• Note: tempting to conclude that *-property 
includes simple security condition, but this is false
– See condition placed on w right for each



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-44

Necessary and Sufficient

• Σ(R, D, W, z0) satisfies the *-property relative to S′ ⊆ S for 
any secure state z0 iff for every action (r, d, (b, m, f, h), (b′, 
m′, f′, h′)), W satisfies the following for every s ∈ S′
– Every (s, o, p) ∈ b – b´ satisfies the *-property relative to S′
– Every (s, o, p) ∈ b´ that does not satisfy the *-property relative to  

S′ is not in b
• Note: “secure” means z0 satisfies *-property relative to S′
• First says every (s, o, p) added satisfies the *-property 

relative to S′; second says any (s, o, p) in b′ that does not 
satisfy the *-property relative to S′ is deleted



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-45

Discretionary Security Property

• State (b, m, f, h) satisfies the discretionary 
security property iff, for each (s, o, p) ∈ b, then p 
∈ m[s, o]

• Idea: if s can read o, then it must have rights to 
do so in the access control matrix m

• This is the discretionary access control part of 
the model
– The other two properties are the mandatory access 

control parts of the model



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-46

Necessary and Sufficient

• Σ(R, D, W, z0) satisfies the ds-property for any 
secure state z0 iff, for every action (r, d, (b, m, f, 
h), (b′, m′, f′, h′)), W satisfies:
– Every (s, o, p) ∈ b – b′ satisfies the ds-property
– Every (s, o, p) ∈ b′ that does not satisfy the ds-property 

is not in b
• Note: “secure” means z0 satisfies ds-property
• First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in b′ that does 
not satisfy the *-property is deleted



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-47

Secure

• A system is secure iff it satisfies:
– Simple security condition
– *-property
– Discretionary security property

• A state meeting these three properties is also 
said to be secure



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-48

Basic Security Theorem

• Σ(R, D, W, z0) is a secure system if z0 is a 
secure state and W satisfies the conditions 
for the preceding three theorems
– The theorems are on the slides titled 

“Necessary and Sufficient”



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-49

Rule

• ρ: R × V → D × V
• Takes a state and a request, returns a decision and 

a (possibly new) state
• Rule ρ ssc-preserving if for all (r, v) ∈R × V and v

satisfying ssc rel f, ρ(r, v) = (d, v′) means that v′
satisfies ssc rel f′.
– Similar definitions for *-property, ds-property
– If rule meets all 3 conditions, it is security-preserving



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-50

Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in 
a state
– if two rules act on a read request in state v …

• Solution: define relation W(ω) for a set of rules ω
= { ρ1, …, ρm } such that a state (r, d, v, v′) 
∈W(ω) iff either
– d = i; or 
– for exactly one integer j, ρj(r, v) = (d, v′)

• Either request is illegal, or only one rule applies 



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-51

Rules Preserving SSC

• Let ω be set of ssc-preserving rules. Let state z0
satisfy simple security condition. Then Σ(R, D, 
W(ω), z0 ) satisfies simple security condition
– Proof: by contradiction.

• Choose (x, y, z) ∈ Σ(R, D, W(ω), z0) as state not satisfying 
simple security condition; then choose t ∈ N such that (xt, yt, zt) 
is first appearance not meeting simple security condition

• As (xt, yt, zt, zt–1) ∈ W(ω), there is unique rule ρ ∈ ω such that 
ρ(xt, zt–1) = (yt, zt) and yt ≠ i.

• As ρ ssc-preserving, and zt–1 satisfies simple security 
condition, then zt meets simple security condition, 
contradiction.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-52

Adding States Preserving SSC

• Let v = (b, m, f, h) satisfy simple security condition. Let (s, 
o, p) ∉ b, b′ = b ∪ { (s, o, p) }, and v′ = (b′, m, f, h). Then 
v′ satisfies simple security condition iff:

1. Either p = e or p = a; or
2. Either p = r or p = w, and fc(s) dom fo(o)
– Proof

1. Immediate from definition of simple security condition and v′
satisfying ssc rel f

2. v′ satisfies simple security condition means fc(s) dom fo(o), and 
for converse, (s, o, p) ∈ b′ satisfies ssc rel f, so v′ satisfies simple 
security condition



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-53

Rules, States Preserving *-
Property

• Let ω be set of *-property-preserving rules, state 
z0 satisfies *-property. Then Σ(R, D, W(ω), z0 ) 
satisfies *-property

• Let v = (b, m, f, h) satisfy *-property. Let (s, o, 
p) ∉ b, b′ = b ∪ { (s, o, p) }, and v′ = (b′, m, f, 
h). Then v′ satisfies *-property iff one of the 
following holds:
1. p = e or p = a
2. p = r or p = w and fc(s) dom fo(o)



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-54

Rules, States Preserving ds-
Property

• Let ω be set of ds-property-preserving rules, state 
z0 satisfies ds-property. Then Σ(R, D, W(ω), z0 ) 
satisfies ds-property

• Let v = (b, m, f, h) satisfy ds-property. Let (s, o, p) 
∉ b, b′ = b ∪ { (s, o, p) }, and v′ = (b′, m, f, h). 
Then v′ satisfies ds-property iff p ∈ m[s, o].



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-55

Combining

• Let ρ be a rule and ρ(r, v) = (d, v′), where v = (b, m, f, h) 
and v′ = (b′, m′, f′, h′). Then:
1. If b′ ⊆ b, f′ = f, and v satisfies the simple security condition, 

then v′ satisfies the simple security condition
2. If b′ ⊆ b, f′ = f, and v satisfies the *-property, then v′ satisfies 

the *-property
3. If b′ ⊆ b, m[s, o] ⊆ m′ [s, o] for all s ∈ S and o ∈ O, and v

satisfies the ds-property, then v′ satisfies the ds-property



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-56

Proof

1. Suppose v satisfies simple security property.
a) b´ ⊆ b and (s, o, r) ∈ b′ implies (s, o, r) ∈ b
b) b´ ⊆ b and (s, o, w) ∈ b′ implies (s, o, w) ∈ b
c) So fc(s) dom fo(o)
d) But f′ = f
e) Hence f′c(s) dom f′o(o)
f) So v′ satisfies simple security condition

2, 3 proved similarly



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-57

Example Instantiation: Multics

• 11 rules affect rights:
– set to request, release access
– set to give, remove access to different subject
– set to create, reclassify objects
– set to remove objects
– set to change subject security level

• Set of “trusted” subjects ST ⊆ S
– *-property not enforced; subjects trusted not to violate

• ∆(ρ) domain
– determines if components of request are valid



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-58

get-read Rule

• Request r = (get, s, o, r)
– s gets (requests) the right to read o

• Rule is ρ1(r, v):
if (r ≠ ∆(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-59

Security of Rule

• The get-read rule preserves the simple 
security condition, the *-property, and the 
ds-property
– Proof

• Let v satisfy all conditions.   Let ρ1(r, v) = (d, v′). If 
v′ = v, result is trivial. So let v′ = (b ∪ { (s2, o, r) }, 
m, f, h).



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-60

Proof

• Consider the simple security condition.
– From the choice of v′, either b′ – b = ∅ or { (s2, o, r) }
– If b′ – b = ∅, then { (s2, o, r) } ∈ b, so v = v′, proving 

that v′ satisfies the simple security condition.
– If b′ – b = { (s2, o, r) }, because the get-read rule 

requires that fc(s) dom fo(o), an earlier result says that v´
satisfies the simple security condition.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-61

Proof

• Consider the *-property.
– Either s2 ∈ ST or fc(s) dom fo(o) from the definition of 

get-read
– If s2 ∈ ST, then s2 is trusted, so *-property holds by 

definition of trusted and ST.
– If fc(s) dom fo(o), an earlier result says that v′ satisfies 

the simple security condition.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-62

Proof

• Consider the discretionary security property.
– Conditions in the get-read rule require r ∈ m[s, o] and 

either b′ – b = ∅ or { (s2, o, r) }
– If b′ – b = ∅, then { (s2, o, r) } ∈ b, so v = v′, proving 

that v´ satisfies the simple security condition.
– If b′ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier 

result says that v′ satisfies the ds-property.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-63

give-read Rule
• Request r = (s1, give, s2, o, r)

– s1 gives (request to give) s2 the (discretionary) right to read o
– Rule: can be done if giver can alter parent of object

• If object or parent is root of hierarchy, special authorization required

• Useful definitions
– root(o): root object of hierarchy h containing o
– parent(o): parent of o in h (so o ∈ h(parent(o)))
– canallow(s, o, v): s specially authorized to grant access when 

object or parent of object is root of hierarchy
– m∧m[s, o]←r: access control matrix m with r added to m[s, o]



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-64

give-read Rule

• Rule is ρ6(r, v):
if (r ≠ ∆(ρ6)) then ρ6(r, v) = (i, v);
else if ([o ≠ root(o) and parent(o) ≠ root(o) and

parent(o) ∈ b(s1:w)] or
[parent(o) = root(o) and canallow(s1, o, v) ] or
[o = root(o) and canallow(s1, o, v) ])

then ρ6(r, v) = (y, (b, m∧m[s2, o] ← r, f, h));
else ρ1(r, v) = (n, v);



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-65

Security of Rule

• The give-read rule preserves the simple security 
condition, the *-property, and the ds-property
– Proof: Let v satisfy all conditions. Let ρ1(r, v) = (d, v′). 

If v´ = v, result is trivial. So let v′ = (b, m[s2, o]←r, f, h). 
So b′ = b, f′ = f, m[x, y] = m′ [x, y] for all x ∈ S and y ∈
O such that x ≠ s and y ≠ o, and m[s, o] ⊆ m′[s, o]. Then 
by earlier result, v′ satisfies the simple security 
condition, the *-property, and the ds-property.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-66

Principle of Tranquility

• Raising object’s security level
– Information once available to some subjects is no 

longer available
– Usually assume information has already been accessed, 

so this does nothing
• Lowering object’s security level

– The declassification problem
– Essentially, a “write down” violating *-property
– Solution: define set of trusted subjects that sanitize or 

remove sensitive information before security level 
lowered



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-67

Types of Tranquility

• Strong Tranquility
– The clearances of subjects, and the classifications of 

objects, do not change during the lifetime of the system
• Weak Tranquility

– The clearances of subjects, and the classifications of 
objects, do not change in a way that violates the simple 
security condition or the *-property during the lifetime 
of the system



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-68

Example

• DG/UX System
– Only a trusted user (security administrator) can 

lower object’s security level
– In general, process MAC labels cannot change

• If a user wants a new MAC label, needs to initiate 
new process

• Cumbersome, so user can be designated as able to 
change process MAC label within a specified range



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-69

Controversy

• McLean:
– “value of the BST is much overrated since there 

is a great deal more to security than it captures. 
Further, what is captured by the BST is so 
trivial that it is hard to imagine a realistic 
security model for which it does not hold.”

– Basis: given assumptions known to be non-
secure, BST can prove a non-secure system to 
be secure



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-70

†-Property

• State (b, m, f, h) satisfies the †-property iff for each s ∈ S 
the following hold:
1. b(s: a) ≠ ∅⇒ [∀o ∈ b(s: a) [ fc(s) dom fo(o) ] ]
2. b(s: w) ≠ ∅⇒ [∀o ∈ b(s: w) [ fo(o) = fc(s) ] ]
3. b(s: r) ≠ ∅⇒ [∀o ∈ b(s: r) [ fc(s) dom fo(o) ] ]

• Idea: for writing, subject dominates object; for reading, 
subject also dominates object

• Differs from *-property in that the mandatory condition for 
writing is reversed
– For *-property, it’s object dominates subject



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-71

Analogues

The following two theorems can be proved
• Σ(R, D, W, z0) satisfies the †-property relative to S′ ⊆ S for 

any secure state z0 iff for every action (r, d, (b, m, f, h), (b′, 
m′, f′, h′)), W satisfies the following for every s ∈ S´
– Every (s, o, p) ∈ b – b′ satisfies the †-property relative to S′
– Every (s, o, p) ∈ b′ that does not satisfy the †-property relative to  

S′ is not in b

• Σ(R, D, W, z0) is a secure system if z0 is a secure state and 
W satisfies the conditions for the simple security condition, 
the †-property, and the ds-property.



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-72

Problem

• This system is clearly non-secure!
– Information flows from higher to lower because 

of the †-property



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-73

Discussion

• Role of Basic Security Theorem is to demonstrate 
that rules preserve security

• Key question: what is security?
– Bell-LaPadula defines it in terms of 3 properties 

(simple security condition, *-property, discretionary 
security property)

– Theorems are assertions about these properties
– Rules describe changes to a particular system 

instantiating the model
– Showing system is secure requires proving rules 

preserve these 3 properties



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-74

Rules and Model

• Nature of rules is irrelevant to model
• Model treats “security” as axiomatic
• Policy defines “security”

– This instantiates the model
– Policy reflects the requirements of the systems

• McLean’s definition differs from Bell-LaPadula
– … and is not suitable for a confidentiality policy

• Analysts cannot prove “security” definition is 
appropriate through the model



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-75

System Z

• System supporting weak tranquility
• On any request, system downgrades all

subjects and objects to lowest level and 
adds the requested access permission
– Let initial state satisfy all 3 properties
– Successive states also satisfy all 3 properties

• Clearly not secure
– On first request, everyone can read everything



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-76

Reformulation of Secure Action

• Given state that satisfies the 3 properties, 
the action transforms the system into a state 
that satisfies these properties and eliminates 
any accesses present in the transformed 
state that would violate the property in the 
initial state, then the action is secure

• BST holds with these modified versions of 
the 3 properties



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-77

Reconsider System Z

• Initial state:
– subject s, object o
– C = {High, Low}, K = {All}

• Take:
– fc(s) = (Low, {All}), fo(o) = (High, {All})
– m[s, o] = { w }, and b = { (s, o, w) }.

• s requests r access to o
• Now:

– f′o(o) = (Low, {All})
– (s, o, r) ∈ b′, m′ [s, o] = {r, w}



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-78

Non-Secure System Z

• As (s, o, r) ∈ b′ – b and fo(o) dom fc(s), 
access added that was illegal in previous 
state
– Under the new version of the Basic Security 

Theorem, System Z is not secure
– Under the old version of the Basic Security 

Theorem, as f′c(s) = f′o(o), System Z is secure



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-79

Response: What Is Modeling?

• Two types of models
1. Abstract physical phenomenon to 

fundamental properties
2. Begin with axioms and construct a structure 

to examine the effects of those axioms
• Bell-LaPadula Model developed as a model 

in the first sense
– McLean assumes it was developed as a 

model in the second sense



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-80

Reconciling System Z

• Different definitions of security create 
different results
– Under one (original definition in Bell-LaPadula 

Model), System Z is secure
– Under other (McLean’s definition), System Z is 

not secure



June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #5-81

Key Points

• Confidentiality models restrict flow of 
information

• Bell-LaPadula models multilevel security
– Cornerstone of much work in computer security

• Controversy over meaning of security
– Different definitions produce different results


	Chapter 5: Confidentiality Policies
	Overview
	Confidentiality Policy
	Bell-LaPadula Model, Step 1
	Example
	Reading Information
	Writing Information
	Basic Security Theorem, Step 1
	Bell-LaPadula Model, Step 2
	Levels and Lattices
	Levels and Ordering
	Reading Information
	Writing Information
	Basic Security Theorem, Step 2
	Problem
	Solution
	DG/UX System
	MAC Regions
	Directory Problem
	Multilevel Directory
	Object Labels
	Object Labels
	Object Labels
	Object Labels
	Using MAC Labels
	MAC Tuples
	MAC Ranges
	Objects and Tuples
	MAC Tuples
	MAC Tuples
	Formal Model Definitions
	More Definitions
	States and Requests
	History
	Example
	First Transition
	Second Transition
	Basic Security Theorem
	Action
	Simple Security Condition
	Necessary and Sufficient
	*-Property
	*-Property
	Necessary and Sufficient
	Discretionary Security Property
	Necessary and Sufficient
	Secure
	Basic Security Theorem
	Rule
	Unambiguous Rule Selection
	Rules Preserving SSC
	Adding States Preserving SSC
	Rules, States Preserving *-Property
	Rules, States Preserving ds-Property
	Combining
	Proof
	Example Instantiation: Multics
	get-read Rule
	Security of Rule
	Proof
	Proof
	Proof
	give-read Rule
	give-read Rule
	Security of Rule
	Principle of Tranquility
	Types of Tranquility
	Example
	Controversy
	†-Property
	Analogues
	Problem
	Discussion
	Rules and Model
	System Z
	Reformulation of Secure Action
	Reconsider System Z
	Non-Secure System Z
	Response: What Is Modeling?
	Reconciling System Z
	Key Points

