Chapter 9: Basic Cryptography

- Classical Cryptography
- Public Key Cryptography
- Cryptographic Checksums

Overview

- Classical Cryptography
- Cæsar cipher
- Vigènere cipher
- DES
- Public Key Cryptography
- Diffie-Hellman
- RSA
- Cryptographic Checksums
- HMAC

Cryptosystem

- Quintuple ($\mathcal{E}, \mathcal{D}, \mathcal{M}, \mathcal{K}, C)$
- \mathcal{M} set of plaintexts
- \mathcal{K} set of keys
- C set of ciphertexts
- \mathcal{E} set of encryption functions $e: \mathcal{M} \times \mathcal{K} \rightarrow C$
- \mathcal{D} set of decryption functions $d: C \times \mathcal{K} \rightarrow \mathcal{M}$

Example

- Example: Cæsar cipher
- $\mathcal{M}=\{$ sequences of letters $\}$
- $\mathcal{K}=\{i \mid i$ is an integer and $0 \leq i \leq 25\}$
- $\mathcal{E}=\left\{E_{k} \mid k \in \mathcal{K}\right.$ and for all letters m,

$$
\left.E_{k}(m)=(m+k) \bmod 26\right\}
$$

- $\mathcal{D}=\left\{D_{k} \mid k \in \mathcal{K}\right.$ and for all letters c,

$$
\left.D_{k}(c)=(26+c-k) \bmod 26\right\}
$$

- $C=\mathcal{M}$

Attacks

- Opponent whose goal is to break cryptosystem is the adversary
- Assume adversary knows algorithm used, but not key
- Three types of attacks:
- ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
- known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
- chosen plaintext: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
- Based on analysis of underlying mathematics
- Statistical attacks
- Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
- Called models of the language
- Examine ciphertext, correlate properties with the assumptions.

Classical Cryptography

- Sender, receiver share common key
- Keys may be the same, or trivial to derive from one another
- Sometimes called symmetric cryptography
- Two basic types
- Transposition ciphers
- Substitution ciphers
- Combinations are called product ciphers

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
- Plaintext is HELLO WORLD
- Rearrange as

HLOOL
ELWRD

- Ciphertext is HLOOL ELWRD

Attacking the Cipher

- Anagramming
- If 1-gram frequencies match English frequencies, but other n-gram frequencies do not, probably transposition
- Rearrange letters to form n-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
- HE 0.0305
- HO 0.0043
- HL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
- WH 0.0026
- EH, LH, OH, RH, DH ≤ 0.0002
- Implies E follows H

Example

- Arrange so the H and E are adjacent

HE
LL
OW
OR
LD

- Read off across, then down, to get original plaintext

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
- Plaintext is HELLO WORLD
- Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
- Key is 3 , usually written as letter 'D’
- Ciphertext is KHOOR ZRUOG

Attacking the Cipher

- Exhaustive search
- If the key space is small enough, try all possible keys until you find the right one
- Cæsar cipher has 26 possible keys
- Statistical analysis
- Compare to 1-gram model of English

Statistical Attack

- Compute frequency of each letter in ciphertext:

$$
\begin{array}{cccccccc}
\text { G } & 0.1 & \text { H } & 0.1 & \text { K } & 0.1 & \text { O } & 0.3 \\
\text { R } & 0.2 & \text { U } & 0.1 & \text { Z } & 0.1 & &
\end{array}
$$

- Apply 1-gram model of English
- Frequency of characters (1-grams) in English is on next slide

Character Frequencies

a	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	o	0.080	u	0.030
c	0.030	j	0.005	p	0.020	v	0.010
d	0.040	k	0.005	q	0.002	w	0.015
e	0.130	l	0.035	r	0.065	x	0.005
f	0.020	m	0.030	s	0.060	y	0.020
g	0.015					z	0.002

Statistical Analysis

- $f(c)$ frequency of character c in ciphertext
- $\varphi(i)$ correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i
$-\varphi(i)=\Sigma_{0 \leq c \leq 25} f(c) p(c-i)$ so here, $\varphi(i)=0.1 p(6-i)+0.1 p(7-i)+0.1 p(10-i)+$ $0.3 p(14-i)+0.2 p(17-i)+0.1 p(20-i)+$ $0.1 p(25-i)$
- $p(x)$ is frequency of character x in English

Correlation: $\varphi(i)$ for $0 \leq i \leq 25$

\boldsymbol{i}	$\boldsymbol{\varphi}(\boldsymbol{i})$	\boldsymbol{i}	$\boldsymbol{\varphi}(\boldsymbol{i})$	\boldsymbol{i}	$\varphi(\mathbf{i})$	\boldsymbol{i}	$\boldsymbol{\varphi}(\mathbf{i})$
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6	0.0660					25	0.0430

The Result

- Most probable keys, based on φ :
$-i=6, \varphi(i)=0.0660$
- plaintext EBIIL TLOLA
$-i=10, \varphi(i)=0.0635$
- plaintext AXEEH PHKEW
$-i=3, \varphi(i)=0.0575$
- plaintext HELLO WORLD
$-i=14, \varphi(i)=0.0535$
- plaintext WTAAD LDGAS
- Only English phrase is for $i=3$
- That's the key (3 or 'D')

Cæsar’s Problem

- Key is too short
- Can be found by exhaustive search
- Statistical frequencies not concealed well
- They look too much like regular English letters
- So make it longer
- Multiple letters in key
- Idea is to smooth the statistical frequencies to make cryptanalysis harder

Vigènere Cipher

- Like Cæsar cipher, but use a phrase
- Example
- Message THE BOY HAS THE BALL
- Key VIG
- Encipher using Cæsar cipher for each letter: key VIGVIGVIGVIGVIGV plain THEBOYHASTHEBALL cipher OPKWWECIYOPKWIRG

Relevant Parts of Tableau

	G	I	V	•	Tableau shown has
A	G	I	V	relevant rows, columns	
B	H	J	W	only	
E	L	M	Z	•	Example encipherments:
H	N	P	C		- key V, letter T: follow V
L	R	T	G	column down to T row	
O	U	W	J	(giving "O")	
S	Y	A	N	- Key I, letter H: follow I	
T	Z	B	O	column down to H row	
Y	E	H	T	(giving "P")	

Useful Terms

- period: length of key
- In earlier example, period is 3
- tableau: table used to encipher and decipher
- Vigènere cipher has key letters on top, plaintext letters on the left
- polyalphabetic: the key has several different letters
- Cæsar cipher is monoalphabetic

Attacking the Cipher

- Approach
- Establish period; call it n
- Break message into n parts, each part being enciphered using the same key letter
- Solve each part
- You can leverage one part from another
- We will show each step

The Target Cipher

- We want to break this cipher:

ADQYS MIUSB OXKKT MIBHK IZOOO
EQOOG IFBAG KAUMF VVTAA CIDTW
MOCIO EQOOG BMBFV ZGGWP CIEKQ
HSNEW VECNE DLAAV RWKXS VNSVP
hCEUT QOIOF MEGJS WTPCH AJMOC HIUIX

Establish Period

- Kaskski: repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext
- Example:

$$
\begin{array}{ll}
\text { key } & \text { VIGVIGVIGVIGVIGV } \\
\text { plain } & \text { THEBOYHASTHEBALL } \\
\text { cipher } & \text { OPKWWECIYOPKWIRG }
\end{array}
$$

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9 , the period is a factor of 9 (that is, 1,3 , or 9)

Repetitions in Example

Letters	Start	End	Distance	Factors
MI	5	15	10	2,5
OO	22	27	5	5
OEQOOG	24	54	30	$2,3,5$
FV	39	63	24	$2,2,2,3$
AA	43	87	44	$2,2,11$
MOC	50	122	72	$2,2,2,3,3$
Q0	56	105	49	7,7
PC	69	117	48	$2,2,2,2,3$
NE	77	83	6	2,3
SV	94	97	3	3
CH	118	124	6	2,3
Computer Security: Art and Science				
©	O2002-2004 Matt Bishop			

Estimate of Period

- OEQOOG is probably not a coincidence
- It's too long for that
- Period may be 1, 2, 3, 5, 6, 10, 15, or 30
- Most others $(7 / 10)$ have 2 in their factors
- Almost as many (6/10) have 3 in their factors
- Begin with period of $2 \times 3=6$

Check on Period

- Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same
- Tabulated for different periods:
$\begin{array}{llllll}1 & 0.066 & 3 & 0.047 & 5 & 0.044\end{array}$
$\begin{array}{llllll}2 & 0.052 & 4 & 0.045 & 10 & 0.041\end{array}$
Large 0.038

Compute IC

- $\mathrm{IC}=[n(n-1)]^{-1} \sum_{0 \leq i \leq 25}\left[F_{i}\left(F_{i}-1\right)\right]$
- where n is length of ciphertext and F_{i} the number of times character i occurs in ciphertext
- Here, IC = 0.043
- Indicates a key of slightly more than 5
- A statistical measure, so it can be in error, but it agrees with the previous estimate (which was 6)

Splitting Into Alphabets

alphabet 1: AIKHOIATTOBGEEERNEOSAI alphabet 2: DUKKEFUAWEMGKWDWSUFWJU alphabet 3: QSTIQBMAMQBWQVLKVTMTMI alphabet 4: YBMZOAFCOOFPHEAXPQEPOX alphabet 5: SOIOOGVICOVCSVASHOGCC alphabet 6: MXBOGKVDIGZINNVVCIJHH

- ICs (\#1, 0.069; \#2, 0.078; \#3, 0.078; \#4, 0.056; \#5, 0.124; \#6, 0.043) indicate all alphabets have period 1, except \#4 and \#6; assume statistics off

Frequency Examination

ABCDEFGHI JKLMNOPQRSTUVWXYZ
131004011301001300112000000
210022210013010000010404000
312000000201140004013021000
421102201000010431000000211
510500021200000500030020000
601110022311012100000030101
Letter frequencies are (H high, M medium, L low):
HMMMHMMHHMMMMHHMLHHHMLLLLL

Begin Decryption

- First matches characteristics of unshifted alphabet
- Third matches if I shifted to A
- Sixth matches if V shifted to A
- Substitute into ciphertext (bold are substitutions) ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG PAUEF VATAS CIITW EOCNO EIOOL BMTFV EGGOP CNEKI HSSEW NECSE DDAAA RWCXS ANSNP HHEUL QONOF EEGOS WLPCM AJEOC MIUAX

Look For Clues

- AJE in last line suggests "are", meaning second alphabet maps A into S:
ALIYS RICKB OCKSL MIGHS AZOTO MIOOL INTAG PACEF VATIS CIITE EOCNO MIOOL BUTFV EGOOP CNESI HSSEE NECSE LDAAA RECXS ANANP HHECL QONON EEGOS ELPCM AREOC MICAX

Next Alphabet

- MICAX in last line suggests "mical" (a common ending for an adjective), meaning fourth alphabet maps O into A:
ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG PACET VATIS QIITE ECCNO MICOL BUTTV EGOOD CNESI VSSEE NSCSE LDOAA RECLS ANAND HHECL EONON ESGOS ELDCM ARECC MICAL

Got It!

- QI means that U maps into I, as Q is always followed by U:
ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET HATIS QUITE ECONO MICAL BUTTH EGOOD ONESI VESEE NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM ARECO MICAL

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
- Provably unbreakable
- Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
- Warning: keys must be random, or you can attack the cipher by trying to regenerate the key
- Approximations, such as using pseudorandom number generators to generate keys, are not random

Overview of the DES

- A block cipher:
- encrypts blocks of 64 bits using a 64 bit key
- outputs 64 bits of ciphertext
- A product cipher
- basic unit is the bit
- performs both substitution and transposition (permutation) on the bits
- Cipher consists of 16 rounds (iterations) each with a round key generated from the user-supplied key

Generation of Round Keys

Encipherment

The f Function

Controversy

- Considered too weak
- Diffie, Hellman said in a few years technology would allow DES to be broken in days
- Design using 1999 technology published
- Design decisions not public
- S-boxes may have backdoors

Undesirable Properties

- 4 weak keys
- They are their own inverses
- 12 semi-weak keys
- Each has another semi-weak key as inverse
- Complementation property
$-\operatorname{DES}_{k}(m)=c \Rightarrow \operatorname{DES}_{k}(m)=c^{\prime}$
- S-boxes exhibit irregular properties
- Distribution of odd, even numbers non-random
- Outputs of fourth box depends on input to third box

Differential Cryptanalysis

- A chosen ciphertext attack
- Requires 2^{47} plaintext, ciphertext pairs
- Revealed several properties
- Small changes in S-boxes reduce the number of pairs needed
- Making every bit of the round keys independent does not impede attack
- Linear cryptanalysis improves result
- Requires 2^{43} plaintext, ciphertext pairs

DES Modes

- Electronic Code Book Mode (ECB)
- Encipher each block independently
- Cipher Block Chaining Mode (CBC)
- Xor each block with previous ciphertext block
- Requires an initialization vector for the first one
- Encrypt-Decrypt-Encrypt Mode (2 keys: k, k)
$-c=\mathrm{DES}_{k}\left(\mathrm{DES}_{k^{\prime}}{ }^{-1}\left(\operatorname{DES}_{k}(m)\right)\right)$
- Encrypt-Encrypt-Encrypt Mode (3 keys: $k, k^{\prime}, k^{\prime}$)
$-c=\operatorname{DES}_{k}\left(\operatorname{DES}_{k^{\prime}}\left(\mathrm{DES}_{k^{\prime}}(m)\right)\right)$

CBC Mode Encryption

CBC Mode Decryption

Self-Healing Property

- Initial message
- 32313433363538373231343336353837 32313433363538373231343336353837
- Received as (underlined 4c should be 4b)
- ef7c4cb2b4ce6f3b f6266e3a97af0e2c 746ab9a6308f4256 33e60b451b09603d
- Which decrypts to
- efca61e19f4836f1 3231333336353837 32313433363538373231343336353837
- Incorrect bytes underlined
- Plaintext "heals" after 2 blocks

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected Rijndael as Advanced Encryption Standard, successor to DES
- Designed to withstand attacks that were successful on DES

Public Key Cryptography

- Two keys
- Private key known only to individual
- Public key available to anyone
- Public key, private key inverses
- Idea
- Confidentiality: encipher using public key, decipher using private key
- Integrity/authentication: encipher using private key, decipher using public one

Requirements

1. It must be computationally easy to encipher or decipher a message given the appropriate key
2. It must be computationally infeasible to derive the private key from the public key
3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

Diffie-Hellman

- Compute a common, shared key
- Called a symmetric key exchange protocol
- Based on discrete logarithm problem
- Given integers n and g and prime number p, compute k such that $n=g^{k} \bmod p$
- Solutions known for small p
- Solutions computationally infeasible as p grows large

Algorithm

- Constants: prime p, integer $g \neq 0,1, p-1$
- Known to all participants
- Anne chooses private key kAnne, computes public key KAnne $=g^{\text {kAnne }} \bmod p$
- To communicate with Bob, Anne computes Kshared $=K$ Bob ${ }^{\text {kAnne }} \bmod p$
- To communicate with Anne, Bob computes Kshared $=$ KAnne $^{k B o b} \bmod p$
- It can be shown these keys are equal

Example

- Assume $p=53$ and $g=17$
- Alice chooses kAlice $=5$
- Then KAlice $=17^{5} \bmod 53=40$
- Bob chooses $k B o b=7$
- Then $K B o b=17^{7} \bmod 53=6$
- Shared key:
$-K B o b^{k A l i c e} \bmod p=6^{5} \bmod 53=38$
- KAlice ${ }^{k B o b} \bmod p=40^{7} \bmod 53=38$

RSA

- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n

Background

- Totient function $\phi(\mathrm{n})$
- Number of positive integers less than n and relatively prime to n
- Relatively prime means with no factors in common with n
- Example: $\phi(10)=4$
- $1,3,7,9$ are relatively prime to 10
- Example: $\phi(21)=12$
- 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively prime to 21

Algorithm

- Choose two large prime numbers p, q
- Let $n=p q$; then $\phi(n)=(p-1)(q-1)$
- Choose $e<n$ such that e is relatively prime to $\phi(n)$.
- Compute d such that ed $\bmod \phi(n)=1$
- Public key: (e, n); private key: d
- Encipher: $c=m^{e} \bmod n$
- Decipher: $m=c^{d} \bmod n$

Example: Confidentiality

- Take $p=7, q=11$, so $n=77$ and $\phi(n)=60$
- Alice chooses $e=17$, making $d=53$
- Bob wants to send Alice secret message HELLO (07 041111 14)
$-07^{17} \bmod 77=28$
$-04^{17} \bmod 77=16$
$-11^{17} \bmod 77=44$
$-11^{17} \bmod 77=44$
$-14^{17} \bmod 77=42$
- Bob sends 2816444442

HXamie

- Alice receives 2816444442
- Alice uses private key, $d=53$, to decrypt message:
$-28^{53} \bmod 77=07$
$-16^{53} \bmod 77=04$
$-44^{53} \bmod 77=11$
$-44^{53} \bmod 77=11$
$-42^{53} \bmod 77=14$
- Alice translates message to letters to read HELLO
- No one else could read it, as only Alice knows her private key and that is needed for decryption

Example:

Integrity/Authentication

- Take $p=7, q=11$, so $n=77$ and $\phi(n)=60$
- Alice chooses $e=17$, making $d=53$
- Alice wants to send Bob message HELLO (07 041111 14) so Bob knows it is what Alice sent (no changes in transit, and authenticated)
$-07^{53} \bmod 77=35$
$-04^{53} \bmod 77=09$
- $11^{53} \bmod 77=44$
$-11^{53} \bmod 77=44$
- $14^{53} \bmod 77=49$
- Alice sends 3509444449

Example

- Bob receives 3509444449
- Bob uses Alice's public key, $e=17, n=77$, to decrypt message:
- $35^{17} \bmod 77=07$
- $09{ }^{17} \bmod 77=04$
- $44{ }^{17} \bmod 77=11$
- $44^{17} \bmod 77=11$
- $49{ }^{17} \bmod 77=14$
- Bob translates message to letters to read HELLO
- Alice sent it as only she knows her private key, so no one else could have enciphered it
- If (enciphered) message’s blocks (letters) altered in transit, would not decrypt properly

Example: Both

- Alice wants to send Bob message HELLO both enciphered and authenticated (integrity-checked)
- Alice’s keys: public (17, 77); private: 53
- Bob’s keys: public: (37, 77); private: 13
- Alice enciphers HELLO (07 041111 14):
$-\left(07^{53} \bmod 77\right)^{37} \bmod 77=07$
$-\left(04^{53} \bmod 77\right)^{37} \bmod 77=37$
$-\left(11^{53} \bmod 77\right)^{37} \bmod 77=44$
$-\left(11^{53} \bmod 77\right)^{37} \bmod 77=44$
- $\left(14^{53} \bmod 77\right)^{37} \bmod 77=14$
- Alice sends 0737444414

Security Services

- Confidentiality
- Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
- Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

- Integrity
- Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
- Message enciphered with private key came from someone who knew it

Warnings

- Encipher message in blocks considerably larger than the examples here
- If 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
- Attacker cannot alter letters, but can rearrange them and alter message meaning
- Example: reverse enciphered message of text ON to get NO

Cryptographic Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where $k \leq n$).
$-k$ is smaller then n except in unusual circumstances
- Example: ASCII parity bit
- ASCII has 7 bits; 8th bit is "parity"
- Even parity: even number of 1 bits
- Odd parity: odd number of 1 bits

Example Use

- Bob receives "10111101" as bits.
- Sender is using even parity; 61 bits, so character was received correctly
- Note: could be garbled, but 2 bits would need to have been changed to preserve parity
- Sender is using odd parity; even number of 1 bits, so character was not received correctly

Definition

- Cryptographic checksum $h: A \rightarrow B$:

1. For any $x \in A, h(x)$ is easy to compute
2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that $h(x)=y$
3. It is computationally infeasible to find two inputs x, $x^{\prime} \in A$ such that $x \neq x^{\prime}$ and $h(x)=h(x)$

- Alternate form (stronger): Given any $x \in A$, it is computationally infeasible to find a different $x^{\prime} \in A$ such that $h(x)=h(x)$.

Collisions

- If $x \neq x^{\prime}$ and $h(x)=h(x), x$ and x^{\prime} are a collision
- Pigeonhole principle: if there are n containers for $n+1$ objects, then at least one container will have 2 objects in it.
- Application: if there are 32 files and 8 possible cryptographic checksum values, at least one value corresponds to at least 4 files

Keys

- Keyed cryptographic checksum: requires cryptographic key
- DES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
- MD5 and SHA-1 are best known; others include MD4, HAVAL, and Snefru

HMAC

- Make keyed cryptographic checksums from keyless cryptographic checksums
- h keyless cryptographic checksum function that takes data in blocks of b bytes and outputs blocks of l bytes. k 'is cryptographic key of length b bytes
- If short, pad with 0 bytes; if long, hash to length b
- ipad is 00110110 repeated b times
- opad is 01011100 repeated b times
- HMAC-h $(k, m)=h\left(k^{\prime} \oplus\right.$ opad $\left.\| h\left(k^{\prime} \oplus i p a d \| m\right)\right)$
- \oplus exclusive or, || concatenation

Key Points

- Two main types of cryptosystems: classical and public key
- Classical cryptosystems encipher and decipher using the same key
- Or one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys
- Computationally infeasible to derive one from the other
- Cryptographic checksums provide a check on integrity

Cryptography and Network Security

Chapter 3

Traditional

 Symmetric-Key Ciphers
Chapter 3

Objectives

\square To define the terms and the concepts of symmetric key ciphers
\square To emphasize the two categories of traditional ciphers: substitution and transposition ciphers
\square To describe the categories of cryptanalysis used to break the symmetric ciphers
\square To introduce the concepts of the stream ciphers and block ciphers
\square To discuss some very dominant ciphers used in the past, such as the Enigma machine

3-1 INTRODUCTION

Figure 3.1 shows the general idea behind a symmetric-key cipher. The original message from Alice to Bob is called plaintext; the message that is sent through the channel is called the ciphertext. To create the ciphertext from the plaintext, Alice uses an encryption algorithm and a shared secret key. To create the plaintext from ciphertext, Bob uses a decryption algorithm and the same secret key.

```
Topics discussed in this section:
3.1.1 Kerckhoff's Principle
3.1.2 Cryptanalysis
3.1.3 Categories of Traditional Ciphers
```


3.1 Continued

Figure 3.1 General idea of symmetric-key cipher

3.1 Continued

If P is the plaintext, C is the ciphertext, and K is the key,
Encryption: $\mathrm{C}=\mathrm{E}_{k}(\mathrm{P}) \quad$ Decryption: $\mathrm{P}=\mathrm{D}_{k}(\mathrm{C})$
In which, $\mathrm{D}_{k}\left(\mathrm{E}_{k}(x)\right)=\mathrm{E}_{k}\left(\mathrm{D}_{k}(x)\right)=x$
We assume that Bob creates P_{1}; we prove that $\mathrm{P}_{1}=\mathrm{P}$:

$$
\text { Alice: } \mathrm{C}=\mathrm{E}_{k}(\mathrm{P})
$$

Bob: $\mathrm{P}_{1}=\mathrm{D}_{k}(\mathrm{C})=\mathrm{D}_{k}\left(\mathrm{E}_{k}(\mathrm{P})\right)=\mathrm{P}$

3.1 Continued

Figure 3.2 Locking and unlocking with the same key

3.1.1 Kerckhoff's Principle

Based on Kerckhoff's principle, one should always assume that the adversary, Eve, knows the encryption/decryption algorithm. The resistance of the cipher to attack must be based only on the secrecy of the key.

3.1.2 Cryptanalysis

As cryptography is the science and art of creating secret codes, cryptanalysis is the science and art of breaking those codes.

Figure 3.3 Cryptanalysis attacks

3.1.2 Continued

Ciphertext-Only Attack

Figure 3.4 Ciphertext-only attack

3.1.2 Continued

Known-Plaintext Attack

Figure 3.5 Known-plaintext attack

3.1.2 Continued

Chosen-Plaintext Attack

Figure 3.6 Chosen-plaintext attack

Pair created from chosen plaintext

3.1.2 Continued

Chosen-Ciphertext Attack

Figure 3.7 Chosen-ciphertext attack

3-2 SUBSTITUTION CIPHERS

A substitution cipher replaces one symbol with another. Substitution ciphers can be categorized as either monoalphabetic ciphers or polyalphabetic ciphers.

Note

A substitution cipher replaces one symbol with another.

Topics discussed in this section:

3.2.1 Monoalphabetic Ciphres
3.2.2 Polyalphabetic Ciphers

3.2.1 Monoalphabetic Ciphers

Note

In monoalphabetic substitution, the relationship between a symbol in the plaintext to a symbol in the ciphertext is always one-to-one.

3.2.1 Continued

Example 3.1

The following shows a plaintext and its corresponding ciphertext. The cipher is probably monoalphabetic because both l 's (els) are encrypted as \boldsymbol{O} 's.

Plaintext: hello
 Ciphertext: KHOOR

Example 3.2

The following shows a plaintext and its corresponding ciphertext. The cipher is not monoalphabetic because each l (el) is encrypted by a different character.

Plaintext: hello

3.2.1 Continued

Additive Cipher

The simplest monoalphabetic cipher is the additive cipher. This cipher is sometimes called a shift cipher and sometimes a Caesar cipher, but the term additive cipher better reveals its mathematical nature.

Figure 3.8 Plaintext and ciphertext in Z_{26}

Plaintext \longrightarrow	,	b	c		d	e	f	g	h	1	J	k	1	n	m	n	o	p	q	r	S	t	u	v	w	x		y	z
Ciphertext \longrightarrow	A	B	C		D	E	F	G	H	I	J	K	L	M	M	N	O	P	Q	R	S	T	U	V	W			Y	Z
Value \longrightarrow		01	02		03	04	05	06	07	08	09	10	11		2	13	14	15	16	17	18	19	20	21	22			24	,

3.2.1 Continued

Figure 3.9 Additive cipher

Ciphertext

Note

When the cipher is additive, the plaintext, ciphertext, and key are integers in Z_{26}.

3.2.1 Continued

Example 3.3
Use the additive cipher with key $=15$ to encrypt the message "hello".

Solution

We apply the encryption algorithm to the plaintext, character by character:

Plaintext: $\mathrm{h} \rightarrow 07$	Encryption: $(07+15)$ mod 26	Ciphertext: $22 \rightarrow \mathrm{~W}$
Plaintext: $\mathrm{e} \rightarrow 04$	Encryption: $(04+15) \bmod 26$	Ciphertext: $19 \rightarrow \mathrm{~T}$
Plaintext: $\mathrm{l} \rightarrow 11$	Encryption: $(11+15) \bmod 26$	Ciphertext: $00 \rightarrow \mathrm{~A}$
Plaintext: $\mathrm{l} \rightarrow 11$	Encryption: $(11+15) \bmod 26$	Ciphertext: $00 \rightarrow \mathrm{~A}$
Plaintext: $\mathrm{o} \rightarrow 14$	Encryption: $(14+15) \bmod 26$	Ciphertext: $03 \rightarrow \mathrm{D}$

3.2.1 Continued

Example 3.4
Use the additive cipher with key = $\mathbf{1 5}$ to decrypt the message "WTAAD".

Solution

We apply the decryption algorithm to the plaintext character by character:

Ciphertext: W $\rightarrow 22$
Ciphertext: $\mathrm{T} \rightarrow 19$
Ciphertext: A $\rightarrow 00$
Ciphertext: A $\rightarrow 00$
Ciphertext: D $\rightarrow 03$

Decryption: (22-15) mod 26
Decryption: $(19-15) \bmod 26$
Decryption: $(00-15) \bmod 26$
Decryption: $(00-15) \bmod 26$
Decryption: (03-15) mod 26

Plaintext: $07 \rightarrow \mathrm{~h}$
Plaintext: $04 \rightarrow \mathrm{e}$
Plaintext: $11 \rightarrow 1$
Plaintext: $11 \rightarrow 1$
Plaintext: $14 \rightarrow 0$

3.2.1 Continued

Shift Cipher and Caesar Cipher

Historically, additive ciphers are called shift ciphers. Julius Caesar used an additive cipher to communicate with his officers. For this reason, additive ciphers are sometimes referred to as the Caesar cipher. Caesar used a key of $\mathbf{3}$ for his communications.

Note

Additive ciphers are sometimes referred to as shift ciphers or Caesar cipher.

3.2.1 Continued

Example 3.5

Eve has intercepted the ciphertext "UVACLYFZLJBYL". Show how she can use a brute-force attack to break the cipher.

Solution

Eve tries keys from 1 to 7. With a key of 7, the plaintext is "not very secure", which makes sense.

Ciphertext: UVACLYFZLJBYL

$$
\begin{aligned}
& \text { K=1 } \rightarrow \text { Plaintext: tuzbkxeykiaxk } \\
& \text { K=2 } \rightarrow \text { Plaintext: styajwdxjhzwj } \\
& \text { K=3 } \rightarrow \text { Plaintext: rsxzivcwigyvi } \\
& \text { K=4 } \rightarrow \text { Plaintext: qrwyhubvhfxuh } \\
& \text { K=5 } \rightarrow \text { Plaintext: pqvxgtaugewtg } \\
& \text { K=6 } \rightarrow \text { Plaintext: opuwfsztfdvsf } \\
& \text { K=7 }
\end{aligned}
$$

3.2.1 Continued

Table 3.1 Frequency of characters in English

Letter	Frequency	Letter	Frequency	Letter	Frequency	Letter	Frequency
E	12.7	H	6.1	W	2.3	K	0.08
T	9.1	R	6.0	F	2.2	J	0.02
A	8.2	D	4.3	G	2.0	Q	0.01
O	7.5	L	4.0	Y	2.0	X	0.01
I	7.0	C	2.8	P	1.9	Z	0.01
N	6.7	U	2.8	B	1.5		
S	6.3	M	2.4	V	1.0		

Table 3.2 Frequency of diagrams and trigrams

Digram	TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF
Trigram	THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH

3.2.1 Continued

Example 3.6

Eve has intercepted the following ciphertext. Using a statistical attack, find the plaintext.

Solution

When Eve tabulates the frequency of letters in this ciphertext, she gets: $I=14, V=13, S=12$, and so $\mathbf{o n}$. The most common character is I with 14 occurrences. This means $k e y=4$.

> the house is now for sale for four million dollars it is worth more hurry before the seller receives more offers

3.2.1 Continued

Multiplicative Ciphers

Figure 3.10 Multiplicative cipher

Note

In a multiplicative cipher, the plaintext and ciphertext are integers in Z_{26}; the key is an integer in $Z_{26}{ }^{*}$.

3.2.1 Continued

Example 3.7

What is the key domain for any multiplicative cipher?

Solution

The key needs to be in Z_{26} *. This set has only 12 members: $\mathbf{1 , 3 , 5}$, 7, 9, 11, 15, 17, 19, 21, 23, 25.

Example 3.8

We use a multiplicative cipher to encrypt the message "hello" with a key of 7. The ciphertext is "XCZZU".

Plaintext: $\mathrm{h} \rightarrow 07$	Encryption: $(07 \times 07) \bmod 26$
Plaintext: $\mathrm{e} \rightarrow 04$	Encryption: $(04 \times 07) \bmod 26$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \bmod 26$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \bmod 26$
Plaintext: $\mathrm{o} \rightarrow 14$	Encryption: $(14 \times 07) \bmod 26$

ciphertext: $23 \rightarrow$ X
ciphertext: $02 \rightarrow \mathrm{C}$
ciphertext: $25 \rightarrow \mathrm{Z}$
ciphertext: $25 \rightarrow \mathrm{Z}$
ciphertext: $20 \rightarrow \mathrm{U}$

3.2.1 Continued

Affine Ciphers

Figure 3.11 Affine cipher

$$
\mathrm{C}=\left(\mathrm{P} \times k_{1}+k_{2}\right) \bmod 26 \quad \mathrm{P}=\left(\left(\mathrm{C}-k_{2}\right) \times k_{1}^{-1}\right) \bmod 26
$$

where k_{1}^{-1} is the multiplicative inverse of k_{1} and $-k_{2}$ is the additive inverse of k_{2}

3.2.1 Continued

Example 3.09

The affine cipher uses a pair of keys in which the first key is from $Z_{26} *$ and the second is from Z_{26}. The size of the key domain is $26 \times 12=312$.

Example 3.10

Use an affine cipher to encrypt the message "hello" with the key pair (7, 2).

$\mathrm{P}: \mathrm{h} \rightarrow 07$	Encryption: $(07 \times 7+2) \bmod 26$	$\mathrm{C}: 25 \rightarrow \mathrm{Z}$
$\mathrm{P}: \mathrm{e} \rightarrow 04$	Encryption: $(04 \times 7+2) \bmod 26$	$\mathrm{C}: 04 \rightarrow \mathrm{E}$
$\mathrm{P}: 1 \rightarrow 11$	Encryption: $(11 \times 7+2) \bmod 26$	$\mathrm{C}: 01 \rightarrow \mathrm{~B}$
$\mathrm{P}: 1 \rightarrow 11$	Encryption: $(11 \times 7+2) \bmod 26$	$\mathrm{C}: 01 \rightarrow \mathrm{~B}$
$\mathrm{P}: \mathrm{o} \rightarrow 14$	Encryption: $(14 \times 7+2) \bmod 26$	$\mathrm{C}: 22 \rightarrow \mathrm{~W}$

3.2.1 Continued

Example 3.11

Use the affine cipher to decrypt the message "ZEBBW" with the key pair $(7,2)$ in modulus 26.

Solution

C: $\mathrm{Z} \rightarrow 25$	Decryption: $\left((25-2) \times 7^{-1}\right) \bmod 26$	P:07 $\rightarrow \mathrm{h}$
C: $\mathrm{E} \rightarrow 04$	Decryption: $\left((04-2) \times 7^{-1}\right) \bmod 26$	P:04 $\rightarrow \mathrm{e}$
C: $\mathrm{B} \rightarrow 01$	Decryption: $\left((01-2) \times 7^{-1}\right) \bmod 26$	P:11 $\rightarrow 1$
C: $\mathrm{B} \rightarrow 01$	Decryption: $\left((01-2) \times 7^{-1}\right) \bmod 26$	P:11 $\rightarrow 1$
C $\mathrm{W} \rightarrow 22$	Decryption: $\left((22-2) \times 7^{-1}\right) \bmod 26$	P:14 $\rightarrow \mathrm{o}$

Example 3.12

The additive cipher is a special case of an affine cipher in which $k_{1}=1$. The multiplicative cipher is a special case of affine cipher in which $\boldsymbol{k}_{2}=0$.

3.2.1 Continued

Monoalphabetic Substitution Cipher

Because additive, multiplicative, and affine ciphers have small key domains, they are very vulnerable to brute-force attack.

A better solution is to create a mapping between each plaintext character and the corresponding ciphertext character. Alice and Bob can agree on a table showing the mapping for each character.

Figure 3.12 An example key for monoalphabetic substitution cipher

Plaintext $\longrightarrow \mathrm{a}$	b	c			e	f	g	h			j	k	1	m		n	o	p	q	q	r	s	t	u	v	,	w	x	y	z
Ciphertext $\longrightarrow \mathrm{N}$	O	A			R	B	E	C		F	U	X	D	Q	Q	G	Y	L	K	K	H	V	I		J		P	Z	S	

3.2.1 Continued

Example 3.13

We can use the key in Figure 3.12 to encrypt the message
this message is easy to encrypt but hard to find the key

The ciphertext is

ICFVQRVVNEFVRNVSIYRGAHSLIOJICNHTIYBFGTICRXRS

3.2.2 Polyalphabetic Ciphers

In polyalphabetic substitution, each occurrence of a character may have a different substitute. The relationship between a character in the plaintext to a character in the ciphertext is one-to-many.

Autokey Cipher

$$
\mathrm{P}=\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \quad \mathrm{C}=\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \ldots \quad k=\left(k_{1}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots\right)
$$

Encryption: $\mathrm{C}_{\mathrm{i}}=\left(\mathrm{P}_{\mathrm{i}}+k_{\mathrm{i}}\right) \bmod 26$
Decryption: $\mathrm{P}_{\mathrm{i}}=\left(\mathrm{C}_{\mathrm{i}}-k_{\mathrm{i}}\right) \bmod 26$

3.2.2 Continued

Example 3.14

Assume that Alice and Bob agreed to use an autokey cipher with initial key value $k_{1}=12$. Now Alice wants to send Bob the message "Attack is today". Enciphering is done character by character.

Plaintext:	a	t	t	a	c	k	i	s	t	o	d	a	y
P’s Values:	00	19	19	00	02	10	08	18	19	14	03	00	24
Key stream:	12	00	19	19	00	02	10	08	18	19	14	03	00
C's Values:	12	19	12	19	02	12	18	00	11	7	17	03	24
Ciphertext:	\mathbf{M}	\mathbf{T}	\mathbf{M}	\mathbf{T}	\mathbf{C}	\mathbf{M}	\mathbf{S}	\mathbf{A}	\mathbf{L}	\mathbf{H}	\mathbf{R}	\mathbf{D}	\mathbf{Y}

3.2.2 Continued

Playfair Cipher

Figure 3.13 An example of a secret key in the Playfair cipher

Example 3.15

Let us encrypt the plaintext "hello" using the key in Figure 3.13.
he \rightarrow EC
$\mathrm{lx} \rightarrow \mathrm{QZ}$
$\mathrm{lo} \rightarrow \mathrm{BX}$
Plaintext: hello
Ciphertext: ECQZBX

3.2.2 Continued

Vigenere Cipher

$$
\left.\begin{array}{rc}
\mathrm{P}=\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots & \mathrm{C}=\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \ldots
\end{array} \mathrm{~K}=\left[\left(k_{1}, k_{2}, \ldots, k_{m}\right),\left(k_{1}, k_{2}, \ldots, k_{m}\right), \ldots\right]\right\}
$$

Example 3.16

We can encrypt the message "She is listening" using the 6character keyword "PASCAL".

Plaintext:	S	h	e	i	S	1	i	S	t	e	n	i	n	g
P's values:	18	07	04	08	18	11	08	18	19	04	13	08	13	06
Key stream:	15	00	18	02	00	11	15	00	18	02	00	11	15	00
C's values:	07	07	22	10	18	22	23	18	11	6	13	19	02	06
Ciphertext:	H	H	W	K	S	W	X	S	L	G	N	T	C	G

3.2.2 Continued

Example 3.16

Let us see how we can encrypt the message "She is listening" using the 6-character keyword "PASCAL". The initial key stream is (15, $0,18,2,0,11$). The key stream is the repetition of this initial key stream (as many times as needed).

Plaintext:	S	h	e	i	s	1	i	S	t	e	n	i	n	g
P's values:	18	07	04	08	18	11	08	18	19	04	13	08	13	06
Key stream:	15	00	18	02	00	11	15	00	18	02	00	11	15	00
C's values:	07	07	22	10	18	22	23	18	11	6	13	19	02	06
Ciphertext:	H	H	W	K	S	W	X	S	L	G	N	T	C	G

3.2.2 Continued

Example 3.17

Vigenere cipher can be seen as combinations of \mathbf{m} additive ciphers.

Figure 3.14 A Vigenere cipher as a combination of m additive ciphers

3.2.2 Continued

Using Example 3.18, we can say that the additive cipher is a special case of Vigenere cipher in which $\boldsymbol{m}=1$.

Table 3.3
A Vigenere Tableau

	a	b	c	d	e	f	g	h	i	j	k	1	m	n	o	p	q	r	S	t	v	v	w	X	y	Z
A	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
B	B	C	D	E	F	G	H	I	J	K	K	M	(N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S		U	V	W	X	Y	Z	A	B
D	D	E	F	G	H	I	J	K	L	M	M N	O	P	Q	R			U	V	W	X	Y	Z	A	B	C
E	E	F	G	H	I	J	K	L	M	(O	P	Q	R	S		U	V	W	X	Y	Z	A	B	C	D
F	F	G	H	I	J	K	L	M	N	- O	P	Q	R	S				W	X	Y	Z		B		D	E
G	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
H	H	I	J	K	L	M	N	O	P	Q	Q R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
I		J	K	L	M	N	O	P	Q	Q	S	T	U	V	W	X	Y	Z	A	B				F	G	H
J	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X X	Y	Z	A	B	C	D	E		G	H	I
K	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
L	L	M	N	O	P	Q	R	S	T	U	J V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
M	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
N	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
0	O	P	Q	R	S	T	U	V	W	X	X Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D		F	G	H	I	J	K	L		N	O
Q	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E		G		I	J		L		N	O	P
R	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L		N	O	P	Q
S	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
T		U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L		N	O	P	Q	R	S
U	U	V	W	X	Y	Z	A	B	C	C D	E	F	G	H	I	J	K	L		N	O	P	Q	R	S	T
V	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L		N	O	P	Q	R	S	T	U
W	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L		,	O	P		R	S	T	U	V
X	X	Y	Z	A	B	C	D	E	F	G	G H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
Y	Y	Z	A	B	c	D	E	F	G	H	H I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X
Z	Z	A	B	C	D	E	F	G	H	H I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y

3.2.2 Continued

Vigenere Cipher (Crypanalysis)

Example 3.19

Let us assume we have intercepted the following ciphertext:

LIOMWGFEGGDVWGHHCQUCRHRWAGWIOWQLKGZETKKMEVLWPCZVGTH-VTSGXQOVGCSVETQLTJSUMVWVEUVLXEWSLGFZMVVWLGYHCUSWXQH-KVGSHEEVFLCFDGVSUMPHKIRZDMPHHBVWVWJWIXGFWLTSHGJOUEEHHVUCFVGOWICQLTJSUXGLW

The Kasiski test for repetition of three-character segments yields the results shown in Table 3.4.

String	First Index	Second Index	Difference
JSU	68	168	100
SUM	69	117	48
VWV	72	132	60
MPH	119	127	8

3.2.2 Continued

Example 3.19

Let us assume we have intercepted the following ciphertext:

LIOMWGFEGGDVWGHHCQUCRHRWAGWIOWQLKGZETKKMEVLWPCZVGTH-VTSGXQOVGCSVETQLTJSUMVWVEUVLXEWSLGFZMVVWLGYHCUSWXQH-KVGSHEEVFLCFDGVSUMPHKIRZDMPHHBVWVWJWIXGFWLTSHGJOUEEHHVUCFVGOWICQLTJSUXGLW

The Kasiski test for repetition of three-character segments yields the results shown in Table 3.4.

String	First Index	Second Index	Difference
JSU	68	168	100
SUM	69	117	48
VWV	72	132	60
MPH	119	127	8

3.2.2 Continued

Example 3.19 (Continued)

The greatest common divisor of differences is 4 , which means that the key length is multiple of 4 . First try $m=4$.

C1: LWGWCRAOKTEPGTQCTJVUEGVGUQGECVPRPVJGTJEUGCJG P1: jueuapymircneroarhtsthihytrahcieixsthcarrehe C2: IGGGQHGWGKVCTSOSQSWVWFVYSHSVFSHZHWWFSOHCOQSL P2: usssctsiswhofeaeceihcetesoecatnpntherhctecex C3: OFDHURWQZKLZHGVVLUVLSZWHWKHFDUKDHVIWHUHFWLUW P3: Icaerotnwhiwedssirsiirhketehretltiideatrairt C4: MEVHCWILEMWVVXGETMEXLMLCXVELGMIMBWXLGEVVITX P4: iardysehaisrrtcapiafpwtethecarhaesfterectpt In this case, the plaintext makes sense.

Julius Caesar used a cryptosystem in his wars, which is now referred to as Caesar cipher. It is an additive cipher with the key set to three. Each character in the plaintext is shifted three characters to create ciphertext.

3.2.2 Continued

Hill Cipher

Figure 3.15 Key in the Hill cipher

$$
\mathrm{K}=\left[\begin{array}{cccc}
k_{11} & k_{12} & \ldots & k_{1 m} \\
k_{21} & k_{22} & \ldots & k_{2 m} \\
\vdots & \vdots & & \vdots
\end{array}\right] \begin{aligned}
& \\
& \mathrm{C}_{1}=\mathrm{P}_{1} k_{11}+\mathrm{P}_{2} k_{21}+\cdots+\mathrm{P}_{m} k_{m 1} \\
& \mathrm{C}_{2}=\mathrm{P}_{1} k_{12}+\mathrm{P}_{2} k_{22}+\cdots+\mathrm{P}_{m} k_{m 2} \\
& \cdots \\
& \mathrm{C}_{\mathrm{m}}=\mathrm{P}_{1} k_{1 m}+\mathrm{P}_{2} k_{2 m}+\cdots+\mathrm{P}_{m} k_{m m}
\end{aligned}
$$

Note

The key matrix in the Hill cipher needs to have a multiplicative inverse.

3.2.2 Continued

Example 3.20

For example, the plaintext "code is ready" can make a 3×4 matrix when adding extra bogus character " z " to the last block and removing the spaces. The ciphertext is "OHKNIHGKLISS".

Figure 3.16 Example 3.20

$$
\begin{aligned}
& \text { a. Encryption } \\
& {\left[\begin{array}{cccc}
02 & 14 & 03 & 04 \\
08 & 18 & 17 & 04 \\
00 & 03 & 24 & 25
\end{array}\right]=\left[\begin{array}{cccc}
14 & 07 & 10 & 13 \\
08 & 07 & 06 & 11 \\
11 & 08 & 18 & 18
\end{array}\right]\left[\begin{array}{cccc}
02 & 15 & 22 & 03 \\
15 & 00 & 19 & 03 \\
09 & 09 & 03 & 11 \\
17 & 00 & 04 & 07
\end{array}\right]} \\
& \text { b. Decryption }
\end{aligned}
$$

3.2.2 Continued

Example 3.21

Assume that Eve knows that $\boldsymbol{m}=3$. She has intercepted three plaintext/ciphertext pair blocks (not necessarily from the same message) as shown in Figure 3.17.

Figure 3.17 Example 3.21

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
05 & 07 & 10
\end{array}\right] \longleftrightarrow\left[\begin{array}{lll}
03 & 06 & 00
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
13 & 17 & 07
\end{array}\right] \longleftrightarrow\left[\begin{array}{ccc}
14 & 16 & 09
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
00 & 05 & 04
\end{array}\right] \longleftrightarrow\left[\begin{array}{ccc}
03 & 17 & 11 \\
\mathrm{C} &
\end{array}\right]}
\end{aligned}
$$

3.2.2 Continued

Example 3.21 (Continued)

She makes matrices \mathbf{P} and \mathbf{C} from these pairs. Because \mathbf{P} is invertible, she inverts the P matrix and multiplies it by C to get the K matrix as shown in Figure 3.18.

Figure 3.18 Example 3.21

$$
\begin{array}{r}
{\left[\begin{array}{lll}
02 & 03 & 07 \\
05 & 07 & 09 \\
01 & 02 & 11
\end{array}\right]} \\
\mathrm{K}
\end{array} \frac{\left[\begin{array}{lll}
21 & 14 & 01 \\
00 & 08 & 25 \tag{C}\\
13 & 03 & 08
\end{array}\right]}{\left[\begin{array}{lll}
03 & 06 & 00 \\
14 & 16 & 09 \\
03 & 17 & 11
\end{array}\right]}
$$

Now she has the key and can break any ciphertext encrypted with that key.

3.2.2 Continued

One-Time Pad

One of the goals of cryptography is perfect secrecy. A study by Shannon has shown that perfect secrecy can be achieved if each plaintext symbol is encrypted with a key randomly chosen from a key domain. This idea is used in a cipher called one-time pad, invented by Vernam.

3.2.2 Continued

Rotor Cipher

Figure 3.19 A rotor cipher

3.2.2 Continued

Enigma Machine

Figure 3.20 A schematic of the Enigma machine

3-3 TRANSPOSITION CIPHERS

A transposition cipher does not substitute one symbol for another, instead it changes the location of the symbols.

Note

A transposition cipher reorders symbols.

Topics discussed in this section:

3.3.1 Keyless Transposition Ciphers
3.3.2 Keyed Transposition Ciphers
3.3.3 Combining Two Approaches

3.3.1 Keyless Transposition Ciphers

1
Simple transposition ciphers, which were used in the past, are keyless.

Example 3.22

A good example of a keyless cipher using the first method is the rail fence cipher. The ciphertext is created reading the pattern row by row. For example, to send the message "Meet me at the park" to Bob, Alice writes

She then creates the ciphertext "MEMATEAKETETHPR".

3.3.1 Continued

Example 3.23

Alice and Bob can agree on the number of columns and use the second method. Alice writes the same plaintext, row by row, in a table of four columns.

\mathbf{m}	\mathbf{e}	\mathbf{e}	\mathbf{t}
\mathbf{m}	\mathbf{e}	\mathbf{a}	\mathbf{t}
\mathbf{t}	\mathbf{h}	\mathbf{e}	\mathbf{p}
\mathbf{a}	\mathbf{r}	\mathbf{k}	

She then creates the ciphertext "MMTAEEHREAEKTTP".

3.3.1 Continued

Example 3.24

The cipher in Example 3.23 is actually a transposition cipher. The following shows the permutation of each character in the plaintext into the ciphertext based on the positions.

01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
\downarrow														
01	05	09	13	02	06	10	13	03	07	11	15	04	08	12

The second character in the plaintext has moved to the fifth position in the ciphertext; the third character has moved to the ninth position; and so on. Although the characters are permuted, there is a pattern in the permutation: $(01,05,09,13),(02,06,10$, $13),(03,07,11,15)$, and (08,12). In each section, the difference between the two adjacent numbers is 4 .

3.3.2 Keyed Transposition Ciphers

The keyless ciphers permute the characters by using writing plaintext in one way and reading it in another way The permutation is done on the whole plaintext to create the whole ciphertext. Another method is to divide the plaintext into groups of predetermined size, called blocks, and then use a key to permute the characters in each block separately.

3.3.2 Continued

Example 3.25

Alice needs to send the message "Enemy attacks tonight" to Bob..

The key used for encryption and decryption is a permutation key, which shows how the character are permuted.

The permutation yields

\mathbf{E}	\mathbf{E}	\mathbf{M}	\mathbf{Y}	\mathbf{N}	\mathbf{T}	\mathbf{A}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{T}	\mathbf{K}	\mathbf{O}	\mathbf{N}	\mathbf{S}	\mathbf{H}	\mathbf{I}	\mathbf{T}	\mathbf{Z}	\mathbf{G}

3.3.3 Combining Two Approaches

Example 3.26

Figure 3.21

3.3.3 Continued

Keys

In Example 3.27, a single key was used in two directions for the column exchange: downward for encryption, upward for decryption. It is customary to create two keys.

Figure 3.22 Encryption/decryption keys in transpositional ciphers

Encryption key

Decryption key

3.3.3 Continued

Figure 3.23 Key inversion in a transposition cipher

a. Manual process

2	6	3	1	4	7	5
1	2	3	4	5	6	7
1	2	3	4	5	6	7
2	6	3	1	4	7	5

b. Algorithm

3.3.3 Continued

Using Matrices

We can use matrices to show the encryption/decryption process for a transposition cipher.

Example 3.27

Figure 3.24 Representation of the key as a matrix in the transposition cipher

$$
\begin{aligned}
& \begin{array}{|ccccc|}
\hline 3 & 1 & 4 & 5 & 2 \\
\hline & \downarrow & \downarrow & & \\
& & & & \downarrow
\end{array} \\
& {\left[\begin{array}{ccccc}
04 & 13 & 04 & 12 & 24 \\
00 & 19 & 19 & 00 & 02 \\
10 & 18 & 19 & 14 & 13 \\
08 & 06 & 07 & 19 & 25
\end{array}\right] \times\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccccc}
04 & 04 & 12 & 24 & 13 \\
19 & 00 & 00 & 02 & 19 \\
19 & 10 & 14 & 13 & 18 \\
07 & 08 & 19 & 25 & 06
\end{array}\right]}
\end{aligned}
$$

3.3.3 Continued

Example 3.27

Figure 3.24 shows the encryption process. Multiplying the 4×5 plaintext matrix by the 5×5 encryption key gives the 4×5 ciphertext matrix.

Figure 3.24 Representation of the key as a matrix in the transposition cipher

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
\begin{array}{lllll}
3 & 1 & 4 & 5 & 2
\end{array} \\
00 & 13 & 04 & 12 & 24 \\
00 & 19 & 19 & 00 & 02 \\
10 & 18 & 19 & 14 & 13 \\
08 & 06 & 07 & 19 & 25
\end{array}\right] \times\left[\begin{array}{ccccc}
\hline 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccccc}
04 & 04 & 12 & 24 & 13 \\
19 & 00 & 00 & 02 & 19 \\
19 & 10 & 14 & 13 & 18 \\
07 & 08 & 19 & 25 & 06
\end{array}\right]} \\
\text { Plaintext Cncryption key }
\end{gathered}
$$

3.3.3 Continued

Double Transposition Ciphers

Figure 3.25 Double transposition cipher

3-4 STREAM AND BLOCK CIPHERS

The literature divides the symmetric ciphers into two broad categories: stream ciphers and block ciphers. Although the definitions are normally applied to modern ciphers, this categorization also applies to traditional ciphers.

Topics discussed in this section:
3.4.1 Stream Ciphers
3.4.2 Block Ciphers
3.4.3 Combination

3.4.1 Stream Ciphers

Call the plaintext stream P, the ciphertext stream C, and the key stream K.

$$
\begin{array}{ccc}
\mathrm{P}=\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}, \ldots & \mathrm{C}=\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}, \ldots & \mathrm{~K}=\left(k_{1}, k_{2}, k_{3}, \ldots\right) \\
\mathrm{C}_{1}=\mathrm{E}_{k 1}\left(\mathrm{P}_{1}\right) & \mathrm{C}_{2}=\mathrm{E}_{k 2}\left(\mathrm{P}_{2}\right) & \mathrm{C}_{3}=\mathrm{E}_{k 3}\left(\mathrm{P}_{3}\right) \ldots
\end{array}
$$

Figure 3.26 Stream cipher

3.4.1 Continued

Example 3.30

Additive ciphers can be categorized as stream ciphers in which the key stream is the repeated value of the key. In other words, the key stream is considered as a predetermined stream of keys or $K=(k, k, \ldots, k)$. In this cipher, however, each character in the ciphertext depends only on the corresponding character in the plaintext, because the key stream is generated independently.

Example 3.31

The monoalphabetic substitution ciphers discussed in this chapter are also stream ciphers. However, each value of the key stream in this case is the mapping of the current plaintext character to the corresponding ciphertext character in the mapping table.

3.4.1 Continued

Example 3.32

Vigenere ciphers are also stream ciphers according to the definition. In this case, the key stream is a repetition of m values, where \boldsymbol{m} is the size of the keyword. In other words,

$$
\mathrm{K}=\left(k_{1}, k_{2}, \ldots k_{\mathrm{m}}, k_{1}, k_{2}, \ldots k_{m}, \ldots\right)
$$

Example 3.33

We can establish a criterion to divide stream ciphers based on their key streams. We can say that a stream cipher is a monoalphabetic cipher if the value of $\boldsymbol{k}_{\mathrm{i}}$ does not depend on the position of the plaintext character in the plaintext stream; otherwise, the cipher is polyalphabetic.

3.4.1 Continued

Example 3.33 (Continued)

\square Additive ciphers are definitely monoalphabetic because k_{i} in the key stream is fixed; it does not depend on the position of the character in the plaintext.
\square Monoalphabetic substitution ciphers are monoalphabetic because k_{i} does not depend on the position of the corresponding character in the plaintext stream; it depends only on the value of the plaintext character.
\square Vigenere ciphers are polyalphabetic ciphers because k_{i} definitely depends on the position of the plaintext character. However, the dependency is cyclic. The key is the same for two characters \boldsymbol{m} positions apart.

3.4.2 Stream Ciphers

In a block cipher, a group of plaintext symbols of size m $(m>1)$ are encrypted together creating a group of ciphertext of the same size. A single key is used to encrypt the whole block even if the key is made of multiple values. Figure 3.27 shows the concept of a block cipher.

Figure 3.27 Block cipher

Plaintext

3.4.2 Continued

Example 3.34

Playfair ciphers are block ciphers. The size of the block is $\boldsymbol{m}=2$. Two characters are encrypted together.

Example 3.35

Hill ciphers are block ciphers. A block of plaintext, of size 2 or more is encrypted together using a single key (a matrix). In these ciphers, the value of each character in the ciphertext depends on all the values of the characters in the plaintext. Although the key is made of $\boldsymbol{m} \times \boldsymbol{m}$ values, it is considered as a single key.

Example 3.36

From the definition of the block cipher, it is clear that every block cipher is a polyalphabetic cipher because each character in a ciphertext block depends on all characters in the plaintext block.

3.4.3 Combination

In practice, blocks of plaintext are encrypted individually, but they use a stream of keys to encrypt the whole message block by block. In other words, the cipher is a block cipher when looking at the individual blocks, but it is a stream cipher when looking at the whole message considering each block as a single unit.

