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Chapter 4

Mathematics of Cryptography
Part II: Algebraic Structures



4.2

❏ To review the concept of algebraic structures

❏ To define and give some examples of groups

❏ To define and give some examples of rings

❏ To define and give some examples of fields

❏ To emphasize the finite fields of type GF(2n)

that make it possible to perform operations such

as addition, subtraction, multiplication, and

division on n-bit words in modern block ciphers

Objectives

Chapter 4
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4-1   ALGEBRAIC STRUCTURES

Cryptography requires sets of integers and specific

operations that are defined for those sets. The

combination of the set and the operations that are

applied to the elements of the set is called an algebraic

structure. In this chapter, we will define three common

algebraic structures: groups, rings, and fields.

Topics discussed in this section:

4.1.1 Groups

4.1.2 Rings

4.1.3 Fields
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4.1 Continued

Figure 4.1  Common algebraic structure
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4.1.1     Groups

A group (G) is a set of elements with a binary operation

(•) that satisfies four properties (or axioms). A

commutative group satisfies an extra property,

commutativity:

❏ Closure:

❏Associativity:

❏ Commutativity:

❏ Existence of identity:

❏ Existence of inverse:
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4.1.1 Continued

Figure 4.2  Group
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4.1.1 Continued

Application

Although a group involves a single operation, the

properties imposed on the operation allow the use of a

pair of operations as long as they are inverses of each

other.

The set of residue integers with the addition operator,

G = < Zn , +>,

is a commutative group. We can perform addition and subtraction

on the elements of this set without moving out of the set.

Example 4.1
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4.1.1 Continued

The set Zn* with the multiplication operator, G = <Zn*, ×>, is also

an abelian group.

Example 4.2

Let us define a set G = < {a, b, c, d}, •> and the operation as shown

in Table 4.1.

Example 4.3
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4.1.1 Continued

A very interesting group is the permutation group. The set is the

set of all permutations, and the operation is composition: applying

one permutation after another.

Example 4.4

Figure 4.3  Composition of permutation (Exercise 4.4)
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4.1.1 Continued
Example 4.4

Table 4.2  Operation table for permutation group

Continued
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4.1.1 Continued

In the previous example, we showed that a set of permutations

with the composition operation is a group. This implies that using

two permutations one after another cannot strengthen the security

of a cipher, because we can always find a permutation that can do

the same job because of the closure property.

Example 4.5
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4.1.1 Continued

 Finite Group

 Subgroups

 Order of a Group
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4.1.1 Continued

Is the group H = <Z10, +> a subgroup of the group G = <Z12, +>?

Example 4.6

Solution

The answer is no. Although H is a subset of G, the operations

defined for these two groups are different. The operation in H is

addition modulo 10; the operation in G is addition modulo 12.
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4.1.1 Continued

Cyclic Subgroups

If a subgroup of a group can be generated using the

power of an element, the subgroup is called the cyclic

subgroup.
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4.1.1 Continued

Four cyclic subgroups can be made from the group G = <Z6, +>.

They are H1 = <{0}, +>, H2 = <{0, 2, 4}, +>, H3 = <{0, 3}, +>, and

H4 = G.

Example 4.7
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4.1.1 Continued

Three cyclic subgroups can be made from the group

G = <Z10∗, ×>. G has only four elements: 1, 3, 7, and 9. The cyclic

subgroups are H1 = <{1}, ×>, H2 = <{1, 9}, ×>, and H3 = G.

Example 4.8
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4.1.1  Continued

Cyclic Groups

A cyclic group is a group that is its own cyclic subgroup.
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4.1.1 Continued

Three cyclic subgroups can be made from the group

G = <Z10∗, ×>. G has only four elements: 1, 3, 7, and 9. The cyclic

subgroups are H1 = <{1}, ×>, H2 = <{1, 9}, ×>, and H3 = G.

Example 4.9

a. The group G = <Z6, +> is a cyclic group with two generators,

g = 1 and g = 5.

b. The group G = <Z10∗, ×> is a cyclic group with two generators,

g = 3 and g = 7.
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4.1.1 Continued

Lagrange’s Theorem

Assume that G is a group, and H is a subgroup of G. If

the order of G and H are |G| and |H|, respectively, then,

based on this theorem, |H| divides |G|.

Order of an Element

The order of an element is the order of the cyclic group it

generates.
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4.1.1 Continued
Example 4.10

a. In the group G = <Z6, +>, the orders of the elements are:

ord(0) = 1, ord(1) = 6, ord(2) = 3, ord(3) = 2, ord(4) = 3,

ord(5) = 6.

b. In the group G = <Z10*, ×>, the orders of the elements are:

ord(1) = 1, ord(3) = 4, ord(7) = 4, ord(9) = 2.
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4.1.2     Ring

A ring, R = <{…}, •, >, is an algebraic structure with two

operations.

Figure 4.4  Ring
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4.1.2 Continued
Example 4.11

The set Z with two operations, addition and multiplication, is a

commutative ring. We show it by R = <Z, +, ×>. Addition satisfies

all of the five properties; multiplication satisfies only three

properties.
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4.1.3     Field

A field, denoted by F = <{…}, •, > is a commutative ring

in which the second operation satisfies all five properties

defined for the first operation except that the identity of

the first operation has no inverse.

Figure 4.5  Field
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4.1.3 Continued

Galois showed that for a field to be finite, the number of

elements should be pn, where p is a prime and n is a

positive integer.

Finite Fields 

A Galois field, GF(pn), is a finite field 

with pn elements.

Note
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4.1.3 Continued

When n = 1, we have GF(p) field. This field can be the set

Zp, {0, 1, …, p − 1}, with two arithmetic operations.

GF(p) Fields
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4.1.2 Continued
Example 4.12

A very common field in this category is GF(2) with the set {0, 1}

and two operations, addition and multiplication, as shown in

Figure 4.6.

Figure 4.6  GF(2) field
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4.1.2 Continued
Example 4.13

We can define GF(5) on the set Z5 (5 is a prime) with addition and

multiplication operators as shown in Figure 4.7.

Figure 4.7  GF(5) field



4.28

4.1.3 Continued

Table 4.3 Summary

Summary



4.29

4-2   GF(2n) FIELDS

In cryptography, we often need to use four operations

(addition, subtraction, multiplication, and division). In

other words, we need to use fields. We can work in

GF(2n) and uses a set of 2n elements. The elements in

this set are n-bit words.

4.2.1 Polynomials

4.2.2 Using A Generator

4.2.3 Summary

Topics discussed in this section:
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4.2 Continued

Example 4.14

Let us define a GF(22) field in which the set has four 2-bit words:

{00, 01, 10, 11}. We can redefine addition and multiplication for

this field in such a way that all properties of these operations are

satisfied, as shown in Figure 4.8.

Figure 4.8  An example of GF(22) field
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4.2.1     Polynomials

A polynomial of degree n − 1 is an expression

of the form

where xi is called the ith term and ai is called coefficient

of the ith term.
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4.2.1 Continued
Example 4.15

Figure 4.9 show how we can represent the 8-bit word (10011001)

using a polynomials.

Figure 4.9  Representation of an 8-bit word by a polynomial
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4.2.1 Continued
Example 4.16

To find the 8-bit word related to the polynomial x5 + x2 + x, we

first supply the omitted terms. Since n = 8, it means the

polynomial is of degree 7. The expanded polynomial is

This is related to the 8-bit word 00100110.
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4.2.1 Continued
GF(2n) Fields

Polynomials representing n-bit words 

use two fields: GF(2) and GF(2n).

Note
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4.2.1 Continued

For the sets of polynomials in GF(2n), a group of

polynomials of degree n is defined as the modulus. Such

polynomials are referred to as irreducible polynomials.

Modulus

Table 4.9  List of irreducible polynomials
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4.2.1 Continued
Addition

Addition and subtraction operations on 

polynomials are the same operation.

Note
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4.2.1 Continued
Example 4.17

Let us do (x5 + x2 + x)  (x3 + x2 + 1) in GF(28). We use the symbol

 to show that we mean polynomial addition. The following shows

the procedure:
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4.2.1 Continued
Example 4.18

There is also another short cut. Because the addition in GF(2)

means the exclusive-or (XOR) operation. So we can exclusive-or

the two words, bits by bits, to get the result. In the previous

example, x5 + x2 + x is 00100110 and x3 + x2 + 1 is 00001101. The

result is 00101011 or in polynomial notation x5 + x3 + x + 1.
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4.2.1 Continued

1. The coefficient multiplication is done in GF(2).

Multliplication

3. The multiplication may create terms with degree more

than n − 1, which means the result needs to be reduced

using a modulus polynomial.

2. The multiplying xi by xj results in xi+j.
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4.2.1 Continued
Example 4.19

Find the result of (x5 + x2 + x) ⊗ (x7 + x4 + x3 + x2 + x) in GF(28)

with irreducible polynomial (x8 + x4 + x3 + x + 1). Note that we use

the symbol ⊗ to show the multiplication of two polynomials.

Solution

To find the final result, divide the polynomial of degree 12 by the

polynomial of degree 8 (the modulus) and keep only the

remainder. Figure 4.10 shows the process of division.
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4.2.1 Continued

Figure 4.10  Polynomial division with coefficients in GF(2)
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4.2.1 Continued
Example 4.20

In GF (24), find the inverse of (x2 + 1) modulo (x4 + x + 1).

Solution

Table 4.5  Euclidean algorithm for Exercise 4.20

The answer is (x3 + x + 1) as shown in Table 4.5.
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4.2.1 Continued
Example 4.21

In GF(28), find the inverse of (x5) modulo (x8 + x4 + x3 + x + 1).

Solution

Table 4.6  Euclidean algorithm for Exercise 4.21

The answer is (x5 + x4 + x3 + x) as shown in Table 4.6.
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4.2.1 Continued

The computer implementation uses a better algorithm,

repeatedly multiplying a reduced polynomial by x.

Multliplication Using Computer
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4.2.1 Continued
Example 4.22

Find the result of multiplying P1 = (x5 + x2 + x) by P2 = (x7 + x4 + x3

+ x2 + x) in GF(28) with irreducible polynomial (x8 + x4 + x3 + x +

1) using the algorithm described above.

Solution

The process is shown in Table 4.7. We first find the partial result

of multiplying x0, x1, x2, x3, x4, and x5 by P2. Note that although

only three terms are needed, the product of xm ⊗ P2 for m from 0

to 5 because each calculation depends on the previous result.
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4.2.1 Continued
Example 4.22

Table 4.7  An efficient algorithm (Example 4.22)

Continued
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4.2.1 Continued
Example 4.23

Repeat Example 4.22 using bit patterns of size 8.

Solution

We have P1 = 000100110, P2 = 10011110, modulus = 100011010

(nine bits). We show the exclusive or operation by .

Table 4.8  An efficient algorithm for multiplication using n-bit words
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4.2.1 Continued
Example 4.24

The GF(23) field has 8 elements. We use the irreducible

polynomial (x3 + x2 + 1) and show the addition and multiplication

tables for this field. We show both 3-bit words and the

polynomials. Note that there are two irreducible polynomials for

degree 3. The other one, (x3 + x + 1), yields a totally different table

for multiplication.
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4.2.1 Continued
Example 4.24

Table 4.9  Addition table for GF(23)

Continued
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4.2.1 Continued
Example 4.24

Table 4.10  Multiplication table for GF(23)

Continued
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4.2.2     Using a Generator

Sometimes it is easier to define the elements of the

GF(2n) field using a generator.
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4.2.1 Continued
Example 4.25

Generate the elements of the field GF(24) using the irreducible

polynomial ƒ(x) = x4 + x + 1.

The elements 0, g0, g1, g2, and g3 can be easily generated, because

they are the 4-bit representations of 0, 1, x2, and x3. Elements g4

through g14, which represent x4 though x14 need to be divided by

the irreducible polynomial. To avoid the polynomial division, the

relation ƒ(g) = g4 + g + 1 = 0 can be used (See next slide).

Solution
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4.2.1 Continued
Example 4.25 Continued
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4.2.1 Continued

Example 4.26

The following show the results of addition and subtraction

operations:
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4.2.1 Continued
Example 4.27

The following show the result of multiplication and division

operations:.
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4.2.3     Summary

The finite field GF(2n) can be used to define four

operations of addition, subtraction, multiplication and

division over n-bit words. The only restriction is that

division by zero is not defined.


