
CS 447: Network and Data Communication
Wireshark Lab #00: Introduction
© 2005-2021, J.F Kurose and K.W. Ross, All Rights Reserved

One’s understanding of network protocols can often be greatly deepened by “seeing protocols in

action” and by “playing around with protocols” – observing the sequence of messages exchanged

between two protocol entities, delving down into the details of protocol operation, and causing

protocols to perform certain actions and then observing these actions and their consequences. This

can be done in simulated scenarios or in a “real” network environment such as the Internet. In the

Wireshark labs you’ll be doing in this course, you’ll be running various network applications in

different scenarios using your own computer. You’ll observe the network protocols in your

computer “in action,” interacting and exchanging messages with protocol entities executing

elsewhere in the Internet. Thus, you and your computer will be an integral part of these “live”

labs. You’ll observe, and you’ll learn, by doing.

In this first Wireshark lab, you’ll get acquainted with Wireshark, and make some simple packet

captures and observations.

The basic tool for observing the messages exchanged between executing protocol entities is called

a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”) messages being

sent/received from/by your computer; it will also typically store and/or display the contents of the

various protocol fields in these captured messages. A packet sniffer itself is passive. It observes

messages being sent and received by applications and protocols running on your computer, but

never sends packets itself. Similarly, received packets are never explicitly addressed to the packet

sniffer. Instead, a packet sniffer receives a copy of packets that are sent/received from/by

application and protocols executing on your machine.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols (in this

case, Internet protocols) and applications (such as a web browser or email client) that normally

run on your computer. The packet sniffer, shown within the dashed rectangle in Figure 1 is an

addition to the usual software in your computer, and consists of two parts. The packet capture

library receives a copy of every link-layer frame that is sent from or received by your computer

over a given interface (link layer, such as Ethernet or Wi-Fi). Recall from the discussion from

section 1.5 in the text (Figure 1.241) that messages exchanged by higher layer protocols such as

HTTP, FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-layer frames that are

transmitted over physical media such as an Ethernet cable or an 802.11 Wi-Fi radio. Capturing

all link-layer frames thus gives you all messages sent/received across the monitored link from/by

all protocols and applications executing in your computer.

1 References to figures and sections are for the 8th edition of our text, Computer Networks, A Top-down Approach, 8h ed., J.F. Kurose

and K.W. Ross, Addison-Wesley/Pearson, 2020. Our authors’ website for this book is http://gaia.cs.umass.edu/kurose_ross You’ll find

lots of interesting open material there.

Note:

• Make sure you produce your answers and any packet prints

in PDF. Moodle will only accept PDF files.

• Provide a screenshot with each answer wherever applicable

or possible as proof of your work.

http://gaia.cs.umass.edu/kurose_ross

Figure 1: Packet sniffer structure

The second component of a packet sniffer is the packet analyzer, which displays the contents of

all fields within a protocol message. In order to do so, the packet analyzer must “understand” the

structure of all messages exchanged by protocols. For example, suppose we are interested in

displaying the various fields in messages exchanged by the HTTP protocol in Figure 1. The packet

analyzer understands the format of Ethernet frames, and so can identify the IP datagram within

an Ethernet frame. It also understands the IP datagram format, so that it can extract the TCP

segment within the IP datagram. Finally, it understands the TCP segment structure, so it can

extract the HTTP message contained in the TCP segment. Finally, it understands the HTTP

protocol and so, for example, knows that the first bytes of an HTTP message will contain the string

“GET,” “POST,” or “HEAD,” as shown in Figure 2.8 in the text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs, allowing

us to display the contents of messages being sent/received from/by protocols at different levels of

the protocol stack. (Technically speaking, Wireshark is a packet analyzer that uses a packet

capture library in your computer. Also, technically speaking, Wireshark captures link-layer

frames as shown in Figure 1, but uses the generic term “packet” to refer to link-layer frames,

network-layer datagrams, transport-layer segments, and application-layer messages, so we’ll use

the less-precise “packet” term here to go along with Wireshark convention). Wireshark is a free

network protocol analyzer that runs on Windows, Mac, and Linux/Unix computers. It’s an ideal

packet analyzer for our labs – it is stable, has a large user base and well-documented support that

includes:

• a user-guide (http://www.wireshark.org/docs/wsug_html_chunked/);

• man pages (http://www.wireshark.org/docs/man-pages/); and

• a detailed FAQ (http://www.wireshark.org/faq.html), rich functionality that includes the

capability to analyze hundreds of protocols, and a well-designed user interface.

It operates in computers using Ethernet, serial (PPP and SLIP), 802.11 wireless LANs, and many

other link-layer technologies (if the OS on which it's running allows Wireshark to do so).

http://www.wireshark.org/
http://www.wireshark.org/docs/wsug_html_chunked/
http://www.wireshark.org/docs/man-pages/
http://www.wireshark.org/faq.html

❖ Getting Wireshark

In order to run Wireshark, you will need to have access to a computer that supports both

Wireshark and the libpcap or WinPCap packet capture library. The libpcap software will be

installed for you, if it is not installed within your operating system, when you install Wireshark.

See http://www.wireshark.org/download.html for a list of supported operating systems and

download sites.

Download and install the Wireshark software:

• Go to http://www.wireshark.org/download.html and download and install the Wireshark

binary for your computer.

The Wireshark FAQ has a number of helpful hints and interesting tidbits of information,

particularly if you have trouble installing or running Wireshark.

❖ Running Wireshark

When you run the Wireshark program, you’ll get a startup screen that looks something like the

screen below. Different versions of Wireshark will have different startup screens – so don’t panic

if yours doesn’t look exactly like the screen below! The Wireshark documentation states “As

Wireshark runs on many different platforms with many different window managers, different

styles applied and there are different versions of the underlying GUI toolkit used, your screen

might look different from the provided screenshots. But as there are no real differences in

functionality these screenshots should still be well understandable.” Well said.

Figure 2: Initial Wireshark Screen

There’s not much interesting on this screen. But note that under the Capture section, there is a

list of so-called interfaces. The computer we’re taking these screenshots from has one active

wireless/Wi-Fi interface – “wlp0s26u1u3” and an inactive wired/ethernet interface – “enp4s0”. In

Disclaimer: The screenshots you see below are

from a machine running Linux. Similar but not

necessarily equivalent behavior is expected on

machines running Windows and/or Mac.

http://www.wireshark.org/download.html
http://www.wireshark.org/download.html

this case, all packets to/from this computer are passing through the Wi-Fi interface, so it’s here

where we want to capture packets. On a Mac, double click on this interface (or on another

computer locate the interface on startup page through which you are getting Internet connectivity,

e.g., mostly likely a Wi-Fi or Ethernet interface, and select that interface.

Let’s take Wireshark out for a spin! If you click on one of these interfaces to start packet capture

(i.e., for Wireshark to begin capturing all packets being sent to/from that interface), a screen like

the one below will be displayed, showing information about the packets being captured. Once you

start packet capture, you can stop it by using the Capture pull down menu and selecting Stop.

Figure 3: Wireshark GUI during packet capture and analysis

This looks more interesting! The Wireshark interface has five major components:

• The command menus are standard pulldown menus located at the top of the window. Of

interest to us now are the File and Capture menus. The File menu allows you to save

captured packet data or open a file containing previously captured packet data, and exit the

Wireshark application. The Capture menu allows you to begin packet capture.

• The packet-listing window displays a one-line summary for each packet captured,

including the packet number (assigned by Wireshark; this is not a packet number contained

in any protocol’s header), the time at which the packet was captured, the packet’s source

and destination addresses, the protocol type, and protocol-specific information contained in

the packet. The packet listing can be sorted according to any of these categories by clicking

on a column name. The protocol type field lists the highest-level protocol that sent or

received this packet, i.e., the protocol that is the source or ultimate sink for this packet.

• The packet-header details window provides details about the packet selected

(highlighted) in the packet-listing window. (To select a packet in the packet-listing window,

place the cursor over the packet’s one-line summary in the packet-listing window and click

with the left mouse button.). These details include information about the Ethernet frame

(assuming the packet was sent/received over an Ethernet interface) and IP datagram that

contains this packet. The amount of Ethernet and IP-layer detail displayed can be expanded

or minimized by clicking on the plus minus boxes to the left of the Ethernet frame or IP

datagram line in the packet details window. If the packet has been carried over TCP or

UDP, TCP or UDP details will also be displayed, which can similarly be expanded or

minimized. Finally, details about the highest-level protocol that sent or received this packet

are also provided.

• The packet-contents window displays the entire contents of the captured frame, in both

ASCII and hexadecimal format.

• Towards the top of the Wireshark graphical user interface, is the packet display filter

field, into which a protocol name or other information can be entered in order to filter the

information displayed in the packet-listing window (and hence the packet-header and

packet-contents windows). In the example below, we’ll use the packet-display filter field to

have Wireshark hide (not display) packets except those that correspond to HTTP messages.

❖ Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! We’ll assume that your

computer is connected to the Internet via a wired Ethernet interface or a wireless 802.11 Wi-Fi

interface. Do the following:

1. Start up your favorite web browser, which will display your selected homepage.

2. Start up the Wireshark software. You will initially see a window similar to that shown in

Figure 2. Wireshark has not yet begun capturing packets.

3. To begin packet capture, select the Capture pull down menu and select Interfaces. This will

cause the “Wireshark: Capture Interfaces” window to be displayed, as shown in Figure 4.

4. You’ll see a list of the interfaces on your computer as well as a count of the packets that

have been observed on that interface so far. Click on Start for the interface on which you

want to begin packet capture (in the case, the Gigabit network Connection). Packet capture

will now begin - Wireshark is now capturing all packets being sent/received from/by your

computer!

Figure 4: Wireshark Capture Interface Window

5. Once you begin packet capture, a window similar to that shown in Figure 3 will appear.

This window shows the packets being captured. By selecting Capture pulldown menu and

selecting Stop, you can stop packet capture. But don’t stop packet capture yet. Let’s capture

some interesting packets first. To do so, we’ll need to generate some network traffic. Let’s

do so using a web browser, which will use the HTTP protocol that we will study in detail in

class to download content from a website.

6. While Wireshark is running, enter the URL:

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

and have that page displayed in your browser. In order to display this page, your browser

will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP messages with the

server in order to download this page, as discussed in section 2.2 of the text. The Ethernet

frames containing these HTTP messages (as well as all other frames passing through your

Ethernet adapter) will be captured by Wireshark.

7. After your browser has displayed the INTRO-wireshark-file1.html page (it is a simple one

line of congratulations), stop Wireshark packet capture by selecting stop in the Wireshark

capture window. The main Wireshark window should now look similar to Figure 3. You

now have live packet data that contains all protocol messages exchanged between your

computer and other network entities! The HTTP message exchanges with the

gaia.cs.umass.edu web server should appear somewhere in the listing of packets captured.

But there will be many other types of packets displayed as well (see, e.g., the many different

protocol types shown in the Protocol column in Figure 3). Even though the only action you

took was to download a web page, there were evidently many other protocols running on

your computer that are unseen by the user. We’ll learn much more about these protocols as

we progress through the text! For now, you should just be aware that there is often much

more going on than “meet’s the eye”!

8. Type in “http” (without the quotes, and in lower case – all protocol names are in lower case

in Wireshark) into the display filter specification window at the top of the main Wireshark

window. Then select Apply (to the right of where you entered “http”). This will cause only

HTTP message to be displayed in the packet-listing window.

9. Find the HTTP GET message that was sent from your computer to the gaia.cs.umass.edu

HTTP server. (Look for an HTTP GET message in the “listing of captured packets” portion

of the Wireshark window (see Figure 3) that shows “GET” followed by the gaia.cs.umass.edu

URL that you entered. When you select the HTTP GET message, the Ethernet frame, IP

datagram, TCP segment, and HTTP message header information will be displayed in the

packet-header window2. By clicking on ‘+’ and ‘-’ right-pointing and down-pointing

arrowheads to the left side of the packet details window, minimize the amount of Frame,

Ethernet, Internet Protocol, and Transmission Control Protocol information displayed.

Maximize the amount information displayed about the HTTP protocol. Your Wireshark

display should now look roughly as shown in Figure 5. (Note, in particular, the minimized

amount of protocol information for all protocols except HTTP, and the maximized amount

of protocol information for HTTP in the packet-header window).

2 Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained within a TCP segment, which is

contained (encapsulated) in an IP datagram, which is encapsulated in an Ethernet frame. If this process of encapsulation isn’t quite

clear yet, review section 1.5 in the text

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html

Figure 5: Wireshark window after step 9

10. Exit Wireshark

Congratulations! You’ve now completed your first Wireshark lab.

What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following questions will

demonstrate that you’ve been able to get Wireshark up and running, and have explored some of

its capabilities. Answer the following questions, based on your Wireshark experimentation:

1. Which of the following protocols are shown as appearing (i.e., are listed in the Wireshark

“protocol” column) in the unfiltered packet-listing window in step 7 above: TCP, QUIC,

HTTP, DNS, UDP, TLSv1.2?

2. How long did it take from when the HTTP GET message was sent until the HTTP OK reply

was received? (By default, the value of the Time column in the packet-listing window is the

amount of time, in seconds, since Wireshark tracing began. To display the Time field in

time-of-day format, select the Wireshark View pull down menu, then select Time Display

Format, then select Time-of-day.)

3. What is the Internet address of the gaia.cs.umass.edu (also known as www-

net.cs.umass.edu)? What is the Internet address of your computer?

4. Print the two HTTP messages (GET and OK) referred to in question 2 above. To do so, select

Print from the Wireshark File command menu, and select the “Selected Packet Only” and

“Print as displayed” radial buttons, and then click OK.

5. Programming with the Zone Server

Your CS447 programming projects are expected to be developed and tested on a Linux

environment. The zone server (running on zone.cs.siue.edu) is available for students who

don’t run Linux natively or are logistically challenged to effectively run multiple Linux

virtual boxes while off-campus. You can find a brief video tutorial on how to use the Zone

server for programming purposes at the following URL:

https://www.cs.siue.edu/~tgamage/programming_with_zone.mp4.

a. Follow the instructions on the video tutorial carefully and produce a side-by-side

screenshot (similar to the one listed below) of a server and a client running on two

different containers communicating with each other. You may use any simple

client-server code combo that you’ve found elsewhere; your textbook, for example, has

sample Python code (in ch.2) if you like Python. It’s not important what your client

and the server are communicating, as long as your screenshot convincingly provides

evidence that they are. Here’s a sample screenshot using the C code found on the

Beej’s Guide (https://beej.us/guide/bgnet/html/) for your reference.

https://www.cs.siue.edu/~tgamage/programming_with_zone.mp4
https://beej.us/guide/bgnet/html/

