
T & TR 11:00 – 01:40 p.m. EB 3140 CS 447 Summer 2018

CS 447 : Networks and Data Communications
Programming Assignment #02

Total Points: 150

Assigned Date : Thursday, May 31, 2018

Due Date : Tuesday, June 12, 2018 @ 10:59:59 a.m.

Overview

For your second project, you will improve your email application by adding basic user authentication
functionality to it. Here’s the back story.

Back Story

Bizarre things are starting to happen in Calculus’s email system. Haddock, for one, is quite confused
about the flurry of replies he is getting to emails he didn’t even send. “What on ten thousand thundering
typhoons is going on here?” Haddock cries out furiously. “I bet that evil Rastapopoulos is behind all this”.
Sure enough, Calculus identifies that since his vanilla SMTP connection from client→ server is unau-
thenticated, the server is not able to validate who is sending emails. Moreover, he also discovers that
anyone can login to read emails without being authenticated as well. To improve the security of his
email system, Calculus plans to provide authentication capabilities at both sending and retrieving ends,
and to make the server keep a log of every interaction it has with any client for postmortem diagnosis
purposes.

Technical Requirements

In addition to the technical requirements from PR01, you are required to meet the following additional
technical requirements.

1. Sender Authentication: Provide support for the SMTP command AUTH. Read Section 4 of the SMTP
RFC found at https://tools.ietf.org/html/rfc4954 for a description of the command.

• The AUTH command is issued between the HELO and MAIL commands in the SMTP sequence.
• Following the AUTH command, the server replies back with code 334 dXNlcm5hbWU6† prompt-

ing the user to enter his/her username. (e.g. username@447.edu).
• Once the user sends his username, the server then responds back with code 334 cGFzc3dvcmQ6‡

prompting the user to enter his/her password.

†‘username’ in base64
‡‘password’ in base64

last updated: 05/14/18 @ 4:35pm 1

https://tools.ietf.org/html/rfc4954


T & TR 11:00 – 01:40 p.m. EB 3140 CS 447 Summer 2018

• A successful (or failed) authentication is marked by the appropriate reply code. Read Section
6 of RFC #4954 for status codes and implement the appropriate ones.

2. To keep the project within the time spec, the following simplified password strategy is proposed.

(a) The first time the user responds to 334 dXNlcm5hbWU6, the server replies back with a 5-digit
randomly generated password over reply code 330 (instead of code 334 cGFzc3dvcmQ6). The
server adds 447 to this number, encodes it in base64, and stores the encoded password along
with the corresponding username in a hidden master password file named “.user_pass”
inside the db folder.

(b) Upon receiving the 330 code and the temporary password, the client immediately terminates
the current connection, waits for 5 seconds, and re-initialize a fresh connection.

(c) On all successive connections, the client responds to server’s request for password, i.e. 334
cGFzc3dvcmQ6, by typing in the previously received password.

(d) The server adds 447 to the received password, encodes it in base64, and checks the encoded
value against the stored value in the password file. If these two values match, the authentica-
tion phase is successful.

(e) Your client programs will take the plain text username and password entered by the user
and encode it in base64 before sending. In otherwords, the server receives base64 encoded
username and password.

3. Only when the authentication is successful the user is able to proceed to the next command in the
SMTP sequence, i.e., MAIL FROM command.

4. Receiver Authentication: This is similar in function to the sender authentication. Due to time
constraints, we’ll use a simplified HTTP authentication mechanism instead of following HTTPS
standards.

• Upon receiver → server connection, use the same procedure as item 2 above for receiver
authentication. Make your server prompt for username and password, compare the values
against the stored value in the password file. You will have to go through a registration phase
just like in receiver authentication. Use the same reply codes.

5. Only successfully authenticated users are allowed to download unread emails.
6. Server Incident Management: The server(s) keep an active log file (named .server_log) of the

connection activities. Every time the server sends or receives a message, a log entry is added to
this log file. More specifically, each log entry (single line) has the following format:

Answer

timestamp from-ip to-ip protocol-command message-code description

Logistics

All PR01 Logistics requirements applies to PR02. The following additional requirements are listed mostly
for clarification purposes.

• You should make sure that only the user authorized is allowed to send emails. What this means
is basically you should check at the client end if the username that was entered during the login
process matches that with the mail from field.
• Your sending client is not supposed to autofill the @447.edu suffix of the email address for the

user.

last updated: 05/14/18 @ 4:35pm 2



T & TR 11:00 – 01:40 p.m. EB 3140 CS 447 Summer 2018

• All SMTP command validations, including the infamous end of message dot (.), and error code
generation should be done at the server side and not at the client side. For all practical purposes,
the sending client is just a message relay.
• For the receiver, when the user successfully logs in, he/she should be greeted with the unread

number of messages in the server. The user should be given the option to either selectively read a
message or read all messages.
• The receiver is not expected to type the HTTP GET message syntax. Your program will do that for

the user based on his preferences. Think about it. Have you ever typed in a the HTTP GET syntax
on your browser before visiting a web page?
• Emails read by the receiver should be downloaded to his (mock) local machine. You are allowed

either keep the original copy in the server (IMAP standard) or to delete it (POP3 standard) after
it’s downloaded. However, on a successive login the number of unread message count should be
updated accordingly.
• You are programming two different servers (SMTP over UDP and HTTP over TCP), which could

technically be running on two different end systems. Think about this when you design/redesign
your server code.

Instructions

• Start early!!
• Take backups of your code often!!.
• Follow a good coding standard. Use a Google style guide appropriate for your favorite program-

ming language found here https://google.github.io/styleguide/, if you don’t already follow
one.
• The due date of this assignment is Tuesday, June 12, 2018 @ 10:59:59 a.m. A dropbox will be

opened for submission through Moodle. This is a firm deadline as the final assignment does
not include the typical 48-hour late penalty period.

Deliverables

A complete solution comprises of:

• A short report (max 5 pages) in PDF format of the design and implementation of your system.
Your report should include the followings:

– Introduction
– Design choices and protocol/reply codes used.
– The output of a sample run (including screenshots where applicable).
– Summary and Issues encountered (if applicable).

• A short readme file with compilation instructions. A makefile is mandatory if your solution
involves running multiple compilation instructions. The only exception, most likely, would be
Python.
• A compressed tarball of the directory containing your source code. Do not include executables,

folders created by your programs, or your test emails in this tarball. To create a compressed tarball
of the directory source, use the following command: tar -zcvf siue-id-pr2.tar.gz source/.
e.g. tar -zcvf tgamage-pr2.tar.gz PR02/.

last updated: 05/14/18 @ 4:35pm 3

https://google.github.io/styleguide/


T & TR 11:00 – 01:40 p.m. EB 3140 CS 447 Summer 2018

Caution: File formatting standards (PDF, readme, make, and tar.gz) as well as some of the logistics
requirements are set forth to streamline the grading process. Submissions that take a unnecessarily long
time grade due to not following the standards listed in this document will be subject to penalties.

Collaborating on ideas or answering questions is always encouraged. Most times, I find that you learn
a lot from your peers. However, do not share/copy/duplicate code from others. If you use code found
online, remember to cite their source in your report. Issues related to academic integrity and plagiarism
have ZERO tolerance.

Useful Resources

• Linux Man pages – found in all linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic network

programming http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
• Simple Mail Transfer Protocol RFC #2821 https://tools.ietf.org/html/rfc2821
• Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content RFC #7231 https://tools.
ietf.org/html/rfc7231
• Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing RFC #7230 https://tools.
ietf.org/html/rfc7230
• SMTP Service Extension for Authentication RFC #4954 https://tools.ietf.org/html/rfc4954
• Base64 encoding/decoding:

– C/C++
∗ glib – https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
∗ openssl http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
∗ GNU coreutils http://www.gnu.org/software/coreutils/coreutils.html

– Java 8 – https://docs.oracle.com/javase/8/docs/api/java/util/Base64.html
– Python 2 – https://docs.python.org/2/library/base64.html
– Python 3 – https://docs.python.org/3.5/library/base64.html
– Additional Resource – http://rosettacode.org/wiki/Base64_encode_data#C

If you use any other resources, make sure to cite those in your report. Using online resources does
not mean you are allowed to copy and use someone else’s code for your purpose. Such incidents,
if detected, will be treated as academic dishonesty.

last updated: 05/14/18 @ 4:35pm 4

http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc4954
https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
http://www.gnu.org/software/coreutils/coreutils.html
https://docs.oracle.com/javase/8/docs/api/java/util/Base64.html
https://docs.python.org/2/library/base64.html
https://docs.python.org/3.5/library/base64.html
http://rosettacode.org/wiki/Base64_encode_data#C

