
T & TR 11:00 – 01:40 p.m. EB 0165 CS 447 Summer 2017

CS 447 : Networks and Data Communications
Programming Assignment #03

Total Points: 150

Assigned Date : Thursday, June 15, 2017

Due Date : Tuesday, June 27, 2017 @ 10:59:59 a.m. (Strong Deadline)

Overview

For your third (and final) project, you will implement a secure client/server application using TLS
(Transport Layer Security). Note: This final assignment has a firm deadline and does not include the
typical 48-hour late penalty period. Here’s the back story.

Back Story

Haddock was quite happy with the new and improved email system until the Thomson and Thompson
showed up one day with some devastating news. “You know Haddock, even with authentication, we can still
read all your emails using Wireshark, right Thompson?”, said Thomson. ”Precisely Thomson. In fact, anyone
can use Wireshark to read all your plaintext emails,” replied Thompson.
Haddock ran down the hallway and stormed into Calculus’s office. “Blue blistering barnacles! Calculus”,
screamed Haddock. “Those two Thompsons are using a shark to read my emails?”. Calculus calmed Haddock
and explained to him that he plans to use Transport Layer Security (TLS) in the next iteration of the email
system to make it even more secure.

Technical Requirements

In order to keep this assignment within the time spec of the project and to accommodate the fact that TLS
requires a reliable Trasport Layer protocol, the technical requirements of this assignment are simplified
in the following manner.

1. You are only required to develop a client-server application to mimic the sender → server SMTP
interaction. However, this interaction is now occurring over TCP (instead of UDP).

2. You are not required to develop the server → receiver portion.
3. All PR02 technical requirements except for items 4 and 5 applies to PR03. This includes sender

authentication, password strategy, and server incident management.
4. Before initiating the SMTP protocol interaction, your client and the server must establish a secure

channel using TLS. See Logistics below for more information.
5. Your solution must use a TLSv1 (or newer depending on your language support) negotiation.

Refrain from using any of the (old) SSL negotiations.

last updated: 06/13/17 @ 10:12am 1



T & TR 11:00 – 01:40 p.m. EB 0165 CS 447 Summer 2017

Logistics

• All applicable PR02 Logistics requirements applies to PR03. Ignore any logistical
requirements related to HTTP.
• You are programming only one server and a client, i.e., SMTP over TCP.
• Extra Credit (25 pts): Run Wireshark on a secure SMTP interaction and on an unsecure SMTP

interaction. Include your observations with appropriately annotated screenshots on your project
report.
• The general workflow of SSL integrated socket communication is as follows‡

The nature of this assignment will force you to do significant amount of unsupervised learning – online
research, forum scans, trial-and-error, and troubleshooting. Most likely, you will also discover (on your
own) that there are more than one library package implementation of openssl standard, especially for
C/C++, which might further complicate your task. So, don’t get frustrated but instead use this as very
valuable learning opportunity. Here are some resources that I believe will help you.

1. HP SSL Programming Tutorial:
http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04s03.html

2. Fedora Security Team – Defensive Coding
https://docs.fedoraproject.org/en-US/Fedora_Security_Team/1/html/Defensive_Coding/index.
html

‡Figure from the HP SSL Programming Tutorial.

last updated: 06/13/17 @ 10:12am 2

http://h41379.www4.hpe.com/doc/83final/ba554_90007/ch04s03.html
https://docs.fedoraproject.org/en-US/Fedora_Security_Team/1/html/Defensive_Coding/index.html
https://docs.fedoraproject.org/en-US/Fedora_Security_Team/1/html/Defensive_Coding/index.html


T & TR 11:00 – 01:40 p.m. EB 0165 CS 447 Summer 2017

3. OpenSSL Wiki – Simple TLS Server:
https://wiki.openssl.org/index.php/Simple_TLS_Server

4. OWASP – Using the Java Secure Socket Extensions:
https://www.owasp.org/index.php/Using_the_Java_Secure_Socket_Extensions

5. http://simplestcodings.blogspot.com/2010/08/secure-server-client-using-openssl-in-c.
html

6. http://stilius.net/java/java_ssl.php
7. https://media.readthedocs.org/pdf/pyopenssl/latest/pyopenssl.pdf

Almost all of these helpful resources also include sample code that might aide you in your overall design
and development.Using online resources does not mean you are allowed to copy and use someone else’s
code for your purpose. Such incidents, if detected, will be treated as academic dishonesty, so please do
not copy-paste some else’s code in your solution. Instead, try to grasp the core idea behind their solution
and weave it in to your own work.
If you find a resource that you think will help your classmates, please share it with me so that I can
disperse it among you colleagues.

Instructions

• Start early!!
• Take backups of your code often!!.
• Follow a good coding standard. Use a Google style guide appropriate for your favorite program-

ming language found here https://google.github.io/styleguide/, if you don’t already follow
one.
• The due date of this assignment is Tuesday, June 27, 2017 @ 10:59:59 a.m. A dropbox will be

opened for submission through Moodle. This is a firm deadline as the final assignment does
not include the typical 48-hour late penalty period.

Deliverables

A complete solution comprises of:

• A short report (max 5 pages) in PDF format of the design and implementation of your system.
Your report should include the followings:

– Introduction
– Design choices and protocol/reply codes used.
– The output of a sample run (including screenshots where applicable).
– Summary and Issues encountered (if applicable).

Note: Your report will carry a significantly more weight in compared to the other two projects as
it will be a reflection of your unsupervised learning efforts. Please make sure to document your
efforts and to develop a good project report.
• A short readme file with compilation instructions. A makefile is mandatory if your solution

involves running multiple compilation instructions. The only exception, most likely, would be
Python.
• A compressed tarball of the directory containing your source code. Do not include executables,

folders created by your programs, or your test emails in this tarball. To create a compressed tarball

last updated: 06/13/17 @ 10:12am 3

https://wiki.openssl.org/index.php/Simple_TLS_Server
https://www.owasp.org/index.php/Using_the_Java_Secure_Socket_Extensions
http://simplestcodings.blogspot.com/2010/08/secure-server-client-using-openssl-in-c.html
http://simplestcodings.blogspot.com/2010/08/secure-server-client-using-openssl-in-c.html
http://stilius.net/java/java_ssl.php
https://media.readthedocs.org/pdf/pyopenssl/latest/pyopenssl.pdf
https://google.github.io/styleguide/


T & TR 11:00 – 01:40 p.m. EB 0165 CS 447 Summer 2017

of the directory source, use the following command: tar -zcvf siue-id-pr2.tar.gz source/.
e.g. tar -zcvf tgamage-pr2.tar.gz PR02/.

Caution: File formatting standards (PDF, readme, make, and tar.gz) as well as some of the logistics
requirements are set forth to streamline the grading process. Submissions that take a unnecessarily long
time grade due to not following the standards listed in this document will be subject to penalties.

Collaborating on ideas or answering questions is always encouraged. Most times, I find that you learn
a lot from your peers. However, do not share/copy/duplicate code from others. If you use code found
online, remember to cite their source in your report. Issues related to academic integrity and plagiarism
have ZERO tolerance.

last updated: 06/13/17 @ 10:12am 4


