
T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

CS 447: Networks and Data Communications
Project #03

Assigned Date : Tuesday, July 21, 2015
Due Date : Tuesday, August 04, 2015 @ 10:14:59 a.m.

Overview

For your third (and final) project, you will improve your email application by adding basic user
authentication functionality to it. Here’s the back story.

Back Story

Bizarre things are starting to happen in Calculus’s email system. Haddock, for one, is quite con-
fused about the flurry of replies he is getting to emails he didn’t even send. “What on ten thousand
thundering typhoons is going on here?” Haddock cries out furiously. “I bet that evil Rastapopoulos
is behind all this”. Sure enough, Calculus identifies that since his vanilla SMTP connection from
client → server is unauthenticated, the server is not able to validate who is sending emails.
Moreover, he also discovers that anyone can login to read emails without being authenticated
as well. To improve the security of his email system, Calculus plans to provide authentication
capabilities at both sending and retrieving ends, and to make the server keep a log of every
interaction it has with any client for postmortem diagnosis purposes.

Technical Requirements

In addition the technical requirements from PR02, you are required to meet the following addi-
tional technical requirements.

1. Sender Authentication: Provide support for the SMTP command AUTH. Read Section 4 of
the SMTP RFC found at https://tools.ietf.org/html/rfc4954 for a description of the
command.

• The AUTH command is issued between the HELO and MAIL commands in the SMTP
sequence.
• Following the AUTH command, the server replies back with code 334 dXNlcm5hbWU6

prompting the user to enter his/her username. (e.g. username@447ss15.edu).
• Once the user sends his username, the server then responds back with code 334
cGFzc3dvcmQ6 prompting the user to enter his/her password.
• A successful (or failed) authentication is marked by the appropriate reply code. Read

Section 6 of RFC #4954 for status codes and implement the appropriate ones.

last updated: 07/21/15 @ 11:09pm 1

https://tools.ietf.org/html/rfc4954


T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

2. To keep the project within the time spec, the following simplified password strategy is
proposed.

(a) The first time the user responds to 334 dXNlcm5hbWU6, the server replies back with
a 5-digit randomly generated password over reply code 330 (instead of code 334
cGFzc3dvcmQ6). The server adds 447 to this number, encodes it in base64, and stores
the encoded password along with the corresponding username in a hidden password
file named “.user_pass”.

(b) Upon receiving the 330 code and the temporary password, the client immediately
terminates the current connection, waits for 5 seconds, and re-initialize a fresh con-
nection.

(c) On all successive connections, the client responds to server’s request for password,
i.e. 334 cGFzc3dvcmQ6, by typing in the previously received password.

(d) The server adds 447 to the received password, encodes it in base64, and checks the
encoded value against the stored value in the password file. If these two values match,
the authentication phase is successful.

3. Only when the authentication is successful the user is able to proceed to the next command
in the SMTP sequence, i.e., MAIL FROM command.

4. Receiver Authentication: This is similar in function to the sender authentication. Due to
time constraints, we’ll use a simplified HTTP authentication mechanism instead of follow-
ing HTTPS standards.

• Upon receiver → server connection, use the same procedure as item 2 above for
receiver authentication. Make your server prompt for username and password, com-
pare the values against the stored value in the password file. You will have to go
through a registration phase just like in receiver authentication. Use the same reply
codes.

5. Only successfully authenticated users are allowed to download unread emails.
6. Server Incident Management: The server(s) keep an active log file (named .server_log)

of the connection activities. Every time the server sends or receives a message, a log entry
is added to this log file. More specifically, each log entry (single line) has the following
format:

timestamp from-ip to-ip protocol-command message-code description

Logistics

PR02 Logistics requirements applies to PR03.

Instructions

• Start early!!
• Take backups of your code often!!.
• Follow a good coding standard. Use the Google C++ coding standard found here http:
//goo.gl/1rC1o, if you don’t already follow one.
• The due date of this assignment is Tuesday, August 04, 2015 @ 10:14:59 a.m. A dropbox

will be opened for submission on Moodle.

last updated: 07/21/15 @ 11:09pm 2

http://goo.gl/1rC1o
http://goo.gl/1rC1o


T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

Deliverables

A complete solution comprises of:

• A short report (max 5 pages) of the design and implementation of your system. Your report
should include the followings:

– Introduction
– Design choices and protocol/reply codes used.
– The output of a sample run (including screenshots where applicable).
– Summary and Issues encountered (if applicable).

• A short readme file with compilation instructions. Also preferable is a makefile to compile
your code.
• A compressed tarball of the directory containing your source code. Do not include ex-

ecutables, folders created by your programs, or your test emails in this tarball. To cre-
ate a compressed tarball of the directory source, use the following command: tar -zcvf
siue-id-pr2.tar.gz source/.
e.g. tar -zcvf tgamage-pr1.tar.gz PR02/

Collaborating on ideas or answering questions is always encouraged. Most times, I find that
you learn a lot from your peers. However, do not share/copy/duplicate code from others. If you
use code found online, remember to site their source in your report. Issues related to academic
integrity and plagiarism have ZERO tolerance.

Useful Resources

• Linux Man pages – found in all linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic

network programming http://beej.us/guide/bgnet/output/print/bgnet_USLetter.
pdf
• Simple Mail Transfer Protocol RFC #2821 https://tools.ietf.org/html/rfc2821
• Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content RFC #7231 https://
tools.ietf.org/html/rfc7231
• Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing RFC #7230 https:
//tools.ietf.org/html/rfc7230
• SMTP Service Extension for Authentication RFC #4954 https://tools.ietf.org/html/
rfc4954
• Base64 encoding/decoding:

– C/C++
∗ glib – https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
∗ openssl http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
∗ GNU coreutils http://www.gnu.org/software/coreutils/coreutils.html

– Java – https://docs.oracle.com/javase/8/docs/api/java/util/Base64.html
– Python – https://docs.python.org/2/library/base64.html
– Additional Resource – http://rosettacode.org/wiki/Base64_encode_data#C

If you use any other resources, make sure to cite those in your report.

last updated: 07/21/15 @ 11:09pm 3

http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc4954
https://tools.ietf.org/html/rfc4954
https://developer.gnome.org/glib/stable/glib-Base64-Encoding.html
http://fm4dd.com/openssl/manual-crypto/BIO_f_base64.htm
http://www.gnu.org/software/coreutils/coreutils.html
https://docs.oracle.com/javase/8/docs/api/java/util/Base64.html
https://docs.python.org/2/library/base64.html
http://rosettacode.org/wiki/Base64_encode_data#C

