
T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

CS 447: Networks and Data Communications
Project #02

Assigned Date : Tuesday, June 30, 2015
Due Date : Tuesday, July 14, 2015 @ 10:14:59 a.m.

Overview

Your second programming assignment is to implement an elementary email application using
the socket interface. There are several objectives of this assignment. These are:

a. to build up on socket programming knowledge from first assignment;
b. to further reinforce the concept of “protocol” using hands-on programming;
c. to learn how to read and understand RFCs; and
d. to gain experience in developing both TCP and UDP -based applications.

Back Story

The success of Professor Calculus’s online calculator is spreading like wildfire and his friends are
reaching out to him for help with “network communication problems”. Captain Haddock, for one,
is having all sorts of issues with the carrier pigeon system he uses when he is on sea voyages.
Often, he is finding out that the messages he sends do not reach their intended recipients in their
original form because the pigeons like to peck on the special corn-based paper Haddock uses.
On the receiving side, Haddock has observed that, most times, the messages he receives are
late. He also does not enjoy writing messages on behalf of his crewmates; right now, none of his
crewmates can afford to own their own carrier pigeons.

Professor Calculus has a brilliant solution. “Let me introduce you to email, Haddock”, said
Calculus. He promises Haddock that this new email solution will provide reliable delivery when
sending emails, be capable of supporting more than one sender at the same time, and to have
super speedy (although sometimes unreliable) delivery when receiving.

Technical Requirements

1. Just as in PR01, you will need to write a client-server application to support Calculus’s
email system.

2. Your sender → server interaction should follow the SMTP protocol, and must support
the following SMTP commands: HELO, MAIL FROM, RCPT TO, DATA, and QUIT. Read Sec-
tion 4.1 of the SMTP RFC found at https://tools.ietf.org/html/rfc2821 for exact com-
mand specifications.

last updated: 06/27/15 @ 1:16am 1

https://tools.ietf.org/html/rfc2821


T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

• Closely related to the SMTP commands are the corresponding reply codes. Read Sec-
tion 4.2.2 of the SMTP RFC, select appropriate reply codes, and implement them. I
anticipate you to find at least 5-6 reply codes necessary for your implementation. Ex-
plain your reply code selection and the justification in your report.

3. Email addresses should have the typical email format, i.e., should include the @ sign. For
the purpose of simplicity in parsing, assume all send and receive email addresses are from
the 447ss15.edu domain. E.g. calculus@447ss15.edu

4. Emails are written at the server, not at the sender. In other words, your SMTP interaction
should not be a file transfer.

5. The sender → server interaction should run over TCP.
6. The sender → server interaction should support multi-threading; more than one client

should be capable of sending emails at the same time.
7. Your server → receiver interaction should follow the HTTP/1.1 protocol and imple-

ment it’s GET method. Read Section 4.3.1 of the HTTP/1.1 RFC found at https://tools.
ietf.org/html/rfc7231 for exact specifications.

• The corresponding HTTP/1.1 reply codes (referred to as status codes in the RFC) are
found in Section 6.1 of the RFC 7231. Bare minimum, you must implement reply codes
200, 400, and 404. Explain how you used these reply codes (and any additional reply
codes you decided to use) in your report.

8. The server → receiver interaction should run over UDP. Multi-threading is not re-
quired for this interaction.

9. To simply the implementation, we’ll use a slightly modified GET request and response for-
mat for this project. Please find more information under the Logistics section below.

10. Your client programs – both the sender and the receiver – should prompt to user to enter
appropriate information, rather than making them type in the correct protocol commands;
your programs should handle the correct protocol interaction internally. In other words,
assume the user of your program is only interested in writing and retrieving emails, and
have no knowledge of protocols and how they work. You, as the developer on the other
hand, is well-versed in protocols, which would be reflected on your code. If this is not clear,
make sure to talk to the instructor immediately.

Logistics

1. IP addresses/hostnames and port numbers should not be hard coded.

• Depending on how you decide to implement your server(s), your server executable
will accept one (or two) command line argument to denote the corresponding listen-
ing port(s) as follows:
./server <tcp-listen-port> (<udp-listen-port>)
• Your client executable will accept two command line arguments as follows:
./client <server-hostname> <server-port>.
Your may assume that your client knows the server hostname/ip address and the correct port
to connect to.

2. Your code must compile and run on a DeterLab-based experiment.

last updated: 06/27/15 @ 1:16am 2

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231


T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

3. I will test at least 2 simultaneous client connections, once as two senders, and once as one
sender + one receiver. Make sure this is covered in your testing plans.

4. All clients should exit gracefully. Server process is permitted to be forcefully killed.
5. Use the following file management strategy:

• When your SMTP server fires up for the first time, make it programmatically (not
manually) create a folder named db to store emails.
• Programmatically create a new subfolder inside db for each new recipient that’s men-

tioned in the RCPT TO command above.
• Store emails as sequentially numbered files. E.g. first email to Haddock will be stored

as /db/haddock/001.email
• When a new receiver fires up for the first time, programmatically (not manually) cre-

ate a folder under receiver’s name to store retrieved emails.

6. Here’s a sample .email file. Note the timestamp added by the server.

Date: Mon, 20 Apr 2015 13:04:20 -0500
From: <tintin@447ss15.edu>
To: <haddock@447ss15.edu>
Subject: The Last Unicorn

Dear Haddock,

Glad to hear that you found the last Unicorn. We are
looking forward to your safe return.

Yours truly,
Tintin and Snowy.

7. Here’s a sample GET request.

GET /db/haddock/ HTTP/1.1
Host: <server-host-name>
Count: 1

Note: Count denotes the number of emails to download. Additionally, you may find read-
ing the HTTP/1.1 Message Syntax and Routing RFC found at https://tools.ietf.org/
html/rfc7230 helpful for understanding.

8. Here’s a corresponding successful GET response from the server. Store the response as a
.txt file under the receiver’s folder.

HTTP/1.1 200 OK
Server: <server-hostname>
Last-Modified: Wed, 22 Jun 2015 19:15:56 -0500
Count: 1
Content-Type: text/plain
Message: 1

last updated: 06/27/15 @ 1:16am 3

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230


T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

Date: Mon, 20 Apr 2015 13:04:20 -0500
From: <tintin@447ss15.edu>
To: <haddock@447ss15.edu>
Subject: The Last Unicorn

Dear Haddock,

Glad to hear that you found the last Unicorn. We are
looking forward to your safe return.

Yours truly,
Tintin and Snowy.

9. At the end of your implementation, you should be able to:

• Compile and run your code in Deterlab. Include a readme.txt file with clear compila-
tion instructions.
• Run your server program(s) first.
• Run one or more clients to connect to the server to send emails.
• Run a receiver to retrieve email.
• Exit the client(s) gracefully.

Instructions

• Start early!!
• Take backups of your code often!!.
• Follow a good coding standard. Use the Google C++ coding standard found here http:
//goo.gl/1rC1o, if you don’t already follow one.
• The due date of this assignment is Tuesday, July 14, 2015 @ 10:14:59 a.m. . A dropbox will

be opened for submission on Moodle.

Deliverables

A complete solution comprises of:

• A short report (max 5 pages) of the design and implementation of your system. Your report
should include the followings:

– Introduction
– Design choices and protocol/reply codes used.
– The output of a sample run (including screenshots where applicable).
– Summary and Issues encountered (if applicable).

• A short readme file with compilation instructions. Also preferable is a makefile to compile
your code.
• A compressed tarball of the directory containing your source code. Do not include ex-

ecutables, folders created by your programs, or your test emails in this tarball. To cre-
ate a compressed tarball of the directory source, use the following command: tar -zcvf

last updated: 06/27/15 @ 1:16am 4

http://goo.gl/1rC1o
http://goo.gl/1rC1o


T & R 10:15 – 12:15 p.m. EB 0140 CS 447 Summer 2015

siue-id-pr2.tar.gz source/.
e.g. tar -zcvf tgamage-pr1.tar.gz PR02/

Collaborating on ideas or answering questions is always encouraged. Most times, I find that
you learn a lot from your peers. However, do not share/copy/duplicate code from others. If you
use code found online, remember to site their source in your report. Issues related to academic
integrity and plagiarism have ZERO tolerance.

Useful Resources

• Linux Man pages – found in all linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic

network programming http://beej.us/guide/bgnet/output/print/bgnet_USLetter.
pdf
• Simple Mail Transfer Protocol RFC #2821 https://tools.ietf.org/html/rfc2821
• Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content RFC #7231 https://
tools.ietf.org/html/rfc7231
• Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing RFC #7230 https:
//tools.ietf.org/html/rfc2821

last updated: 06/27/15 @ 1:16am 5

http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc2821

