
Introduction to Socket
Programming

Disclaimer: These slides are
inspired and the content is
borrowed from the following
textbooks

Thoshitha Gamage, Ph.D.
SIUE

Logical Connection at the Application Layer

• Communication at the
application layer is logical, not
physical

• End points assume the
existence of a two-way logical
connection between them for
communication

• Actual communication takes
place through several devices
e.g. Alice, R2, R4, R5, R6, and bob

Client-Server vs. P2P Paradigm

Client-Server

P2P

Client-Server Programming
• Communication occurs between

two processes – programs in
execution

• A client and a server
• Client program initializes the

communication; send the request
• Server program waits for client

requests, process, and responds to
client program

• Server program must be running
before client makes the request

Application Programming Interface
(API)

• The end-to-end processes must tell
the lower four TCP/IP suite layers
to

• Open the connection
• Send and Receive data from the other

end
• Close the connection

• The lower four layers are built
into the OS with an API presented
to the Application Layer

• e.g. Socket Interface, TLI, STREAM

Sockets
• Core Idea: Use instructions already

designed for sources and sinks in
programming languages

• E.g. file I/O – source:
keyboard, sink: terminal

• Add ONLY new sources and sinks
(for communication) w/o
changing read/write instructions

• NOT a physical entity like a file; an
abstraction

• End-to-end communication is
between two sockets

• Has NO buffer to store data
to be sent or received

• Not capable of sending or
receiving data

• Acts as just a reference/label

Socket Interface in Linux (kernel 2.7.11)

Socket Addressing
• Communication is between two

(end-point) sockets

• Need a pair of socket addresses
• Local (sender)
• Remote (receiver)

• The local address one way is the
remote address the other way

• A socket address
• Defines the computer which

runs the client or the server
• IP address (32-bit)

• Also defines the application
running on the computer

• Port (16-bit)

• Local address provided by the OS
• OS knows the IP address
• Port either assigned if a

standard port or defined if
otherwise

• Remote address
• Server: Finds on the client

connection request
• Client: Should know server

address before establishing
connectivity

• Manually
• Explore and find

(through DNS)

Transport Layer Services
• Applications depend on services provided by the transport layer for

communication
• No physical communication at the application layer

• Common TCP/IP suite transport layer protocols
• TCP

• Connection-oriented – two endpoints establish a logical connection
before communication begins

• Handshake
• Data exchanged in segments; resends allowed – reliable
• Byte stream service

• UDP
• Each message an independent entity encapsulated in a datagram –

connectionless
• No resends for corrupt or lost datagrams – unreliable
• Message-oriented; promotes speed over reliability
• Datagram service

• SCTP
• Combination of TCP and UDP – connection-oriented, reliable,

message-oriented

Standard Sockets

Iterative Communication : UDP
• Client and Server ONLY use one socket each

• Server socket lasts forever
• Client socket is closed when the client process

terminates

• Different clients use different sockets

• Server creates only one socket. Changes remote socket
address for each new client connection

Iterative Communication : TCP
• Server uses two different sockets

• One used to establish connection – listen socket
• Used to listen for incoming connection requests

from clients
• One for data transfer – socket

• Connection establishment separated from exchange

UDP Client/Server Socket Interaction

Close clientSocket

read datagram from clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from serverSocket

write reply to serverSocket
specifying client address,
port number

Server Client

UDP Flow Diagram

TCP Client/Server Socket Interaction

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:

serverSocket = socket()

create socket, connect to hostid, port=x

clientSocket = socket()

Server Client

send request using clientSocket
read request from connectionSocket

write reply to connectionSocket

TCP
connection setup

Close connectionSocket

read reply from clientSocket

Close clientSocket

TCP Flow Diagram

Socket Data Structures

Socket Read/Write Inside Out

Socket Read/Write Inside Out

union u

linux/sched.h
struct files_struct

f_dentry
f_list

max_fds

f_op
f_vfsmnt

f_count
f_flags
f_mode
f_pos

……

d_flags
d_count

d_inode
d_parent

……

linux/fs.h
struct file

linux/dentry.h
struct dentry

connect
close

disconnect

ioctl
accept

init
destory
shutdown
setsockopt
getsockopt

net/sock.h
struct proto

sendmsg
recvmsg

……

tcp_v4_connect
tcp_close

tcp_disconnect

tcp_ioctl
tcp_accept

tcp_v4_init_sock
tcp_v4_destory_sock
tcp_shutdown
tcp_setsockopt
tcp_getsockopt
tcp_sendmsg
tcp_recvmsg

……

ipv4/tcp_ipv4.c
struct tcp_func

net/sock.h
struct sock

s_addr
d_addr

dport

bound_dev_if
sport

……
receive_queue
write_queue

proto
……

……
union tp_pinfo

struct tcp_opt
……

snd_cwnd
……

……
sk_filter

……
socket

……

struct socket

……

linux/fs.h
struct inode

……

inode
file

……

……

sk

file_lock
count

max_fds

next_fd
max_fdset

fd[0]
fd[1]

fd[255]
……

……

opened Linux socket

	Introduction to Socket Programming
	Logical Connection at the Application Layer
	Client-Server vs. P2P Paradigm
	Client-Server Programming
	Sockets
	Socket Interface in Linux (kernel 2.7.11)
	Socket Addressing
	Transport Layer Services
	Standard Sockets
	Iterative Communication : UDP
	Iterative Communication : TCP
	UDP Client/Server Socket Interaction
	UDP Flow Diagram
	TCP Client/Server Socket Interaction
	TCP Flow Diagram
	Socket Data Structures
	Socket Read/Write Inside Out
	Socket Read/Write Inside Out

