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Lower Bounds

Lower bound: an estimate on a minimum amount of work 

needed to solve a given problem

Examples:

 number of comparisons needed to find the largest element 

in a set of n numbers

 number of comparisons needed to sort an array of size n

 number of comparisons necessary  for searching in a sorted 

array

 number of multiplications needed to multiply two n-by-n 

matrices 
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Lower Bounds (cont.)

 Lower bound can be

• an exact count 

• an efficiency class ()

 Tight lower bound: there exists an algorithm with the same 

efficiency as the lower bound

Problem Lower bound Tightness

sorting (nlog n)                          yes

searching in a sorted array (log n)                             yes

element uniqueness                              (nlog n)                          yes

n-digit integer multiplication              (n)                            unknown

multiplication of n-by-n matrices       (n2)                           unknown
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Methods for Establishing Lower Bounds

 trivial lower bounds

 information-theoretic arguments (decision trees)

 adversary arguments

 problem reduction
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Trivial Lower Bounds

Trivial lower bounds: based on counting the number of items 
that must be processed in input and generated as output

Examples
 finding max element

 polynomial evaluation

 sorting

 element uniqueness

 Hamiltonian circuit existence

Conclusions 
 may and may not be useful

 be careful in deciding how many elements must be processed
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Decision Trees

Decision tree — a convenient model of algorithms involving 

comparisons in which:

 internal nodes represent comparisons

 leaves represent outcomes 

Decision tree for 3-element insertion sort

a < b

b <  c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb

yes

a < c < b c < b < a

no
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Decision Trees and Sorting Algorithms

 Any comparison-based sorting algorithm can be represented 
by a decision tree

 Number of leaves (outcomes)  n!

 Height of binary tree with n! leaves   log2n!

 Minimum number of comparisons in the worst case  log2n!
for any comparison-based sorting algorithm

 log2n!  n log2n

 This lower bound is tight (mergesort)
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Adversary Arguments

Adversary argument: a method of proving a lower bound by 

playing role of adversary that makes algorithm work the hardest

by adjusting input 

Example 1: “Guessing” a number between 1 and n with yes/no

questions

Adversary:  Puts the number in a larger of the two subsets
generated by last question

Example 2:  Merging two sorted lists of size n

a1 < a2 < … < an and  b1 < b2 < … < bn

Adversary: ai < bj iff  i < j

Output b1 < a1 < b2 < a2 < … < bn < an requires 2n-1 comparisons

of adjacent  elements
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Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower

bound for Q is also a lower bound for P.           

Hence, find problem Q with a known lower bound that can

be reduced to problem P in question.

Example: P is finding MST for n points in Cartesian plane 

Q is element uniqueness problem (known to be in (nlogn))
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Classifying Problem Complexity

Is the problem tractable, i.e., is there  a polynomial-time (O(p(n)) 

algorithm that solves it?

Possible answers:

 yes (give examples)

 no

• because it’s been proved that no algorithm exists at all 

(e.g.,  Turing’s halting problem)

• because it’s been be proved that any algorithm takes 

exponential time

 unknown
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Problem Types: Optimization and Decision

 Optimization problem: find a solution that maximizes or 
minimizes some objective function

 Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem

 optimization: find Hamiltonian cycle of minimum length

 decision: find Hamiltonian cycle of length  m

Decision problems are more convenient for formal investigation 
of their complexity.
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Class P

P: the class of decision problems that are solvable in O(p(n)) 

time, where p(n) is a polynomial of problem’s input size n

Examples:

 searching

 element uniqueness

 graph connectivity 

 graph acyclicity

 primality testing (finally proved in 2002)
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Class NP

NP (nondeterministic polynomial): class of decision problems 
whose proposed solutions can be verified in polynomial time 
= solvable  by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage 
procedure that:

 generates a random string purported to solve the problem

 checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating 
and verifying a solution on one of its tries  

Why this definition?

 led to development of the rich theory called “computational 
complexity”
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Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal 
form (CNF) satisfiable, i.e., are there values of its 
variables that makes it true?

This problem is in NP.  Nondeterministic algorithm:

 Guess truth assignment

 Substitute the values into the CNF formula to see if it 
evaluates to true

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)

Truth assignments:

A B C D E

0  0  0  0  0

.   .   .

1  1  1  1  1

Checking phase: O(n)
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What problems are in NP?

 Hamiltonian circuit existence 

 Partition problem: Is it possible to partition a set of n
integers into two disjoint subsets with the same sum?

 Decision versions of TSP, knapsack problem, graph 
coloring, and many other combinatorial optimization 
problems.  (Few exceptions include: MST, shortest paths)

 All the problems in P can also be solved in this manner (no 
guessing is necessary), so we have: 

P  NP

 Big question:  P = NP ?
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NP-Complete Problems

A decision problem D is NP-complete if it’s as hard as any 

problem in NP, i.e.,

 D is in NP

 every problem in NP is polynomial-time reducible to D

Cook’s theorem (1971): CNF-sat is NP-complete

NP -complete

problem

NP  problems
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NP-Complete Problems (cont.)

Other NP-complete problems obtained through polynomial-

time reductions from a known NP-complete problem

Examples: TSP, knapsack, partition, graph-coloring and

hundreds of other problems of combinatorial nature

known

NP -complete

problem

NP  problems

candidate

 for  NP  -

completeness
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P  = NP ? Dilemma Revisited

 P  = NP would imply that every problem in NP, including all 

NP-complete problems, could be solved in polynomial time

 If a polynomial-time algorithm for just one NP-complete 

problem is discovered, then every problem in NP can be 

solved in polynomial time, i.e., P  = NP

 Most but not all researchers believe that P  NP , i.e. P is a 
proper subset of NP

NP -complete

problem

NP  problems


