
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Lower Bounds

Lower bound: an estimate on a minimum amount of work

needed to solve a given problem

Examples:

 number of comparisons needed to find the largest element

in a set of n numbers

 number of comparisons needed to sort an array of size n

 number of comparisons necessary for searching in a sorted

array

 number of multiplications needed to multiply two n-by-n

matrices

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Lower Bounds (cont.)

 Lower bound can be

• an exact count

• an efficiency class ()

 Tight lower bound: there exists an algorithm with the same

efficiency as the lower bound

Problem Lower bound Tightness

sorting (nlog n) yes

searching in a sorted array (log n) yes

element uniqueness (nlog n) yes

n-digit integer multiplication (n) unknown

multiplication of n-by-n matrices (n2) unknown

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Methods for Establishing Lower Bounds

 trivial lower bounds

 information-theoretic arguments (decision trees)

 adversary arguments

 problem reduction

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Trivial Lower Bounds

Trivial lower bounds: based on counting the number of items
that must be processed in input and generated as output

Examples
 finding max element

 polynomial evaluation

 sorting

 element uniqueness

 Hamiltonian circuit existence

Conclusions
 may and may not be useful

 be careful in deciding how many elements must be processed

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Decision Trees

Decision tree — a convenient model of algorithms involving

comparisons in which:

 internal nodes represent comparisons

 leaves represent outcomes

Decision tree for 3-element insertion sort

a < b

b < c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb

yes

a < c < b c < b < a

no

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Decision Trees and Sorting Algorithms

 Any comparison-based sorting algorithm can be represented
by a decision tree

 Number of leaves (outcomes) n!

 Height of binary tree with n! leaves log2n!

 Minimum number of comparisons in the worst case log2n!
for any comparison-based sorting algorithm

 log2n! n log2n

 This lower bound is tight (mergesort)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Adversary Arguments

Adversary argument: a method of proving a lower bound by

playing role of adversary that makes algorithm work the hardest

by adjusting input

Example 1: “Guessing” a number between 1 and n with yes/no

questions

Adversary: Puts the number in a larger of the two subsets
generated by last question

Example 2: Merging two sorted lists of size n

a1 < a2 < … < an and b1 < b2 < … < bn

Adversary: ai < bj iff i < j

Output b1 < a1 < b2 < a2 < … < bn < an requires 2n-1 comparisons

of adjacent elements

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower

bound for Q is also a lower bound for P.

Hence, find problem Q with a known lower bound that can

be reduced to problem P in question.

Example: P is finding MST for n points in Cartesian plane

Q is element uniqueness problem (known to be in (nlogn))

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Classifying Problem Complexity

Is the problem tractable, i.e., is there a polynomial-time (O(p(n))

algorithm that solves it?

Possible answers:

 yes (give examples)

 no

• because it’s been proved that no algorithm exists at all

(e.g., Turing’s halting problem)

• because it’s been be proved that any algorithm takes

exponential time

 unknown

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Problem Types: Optimization and Decision

 Optimization problem: find a solution that maximizes or
minimizes some objective function

 Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem

 optimization: find Hamiltonian cycle of minimum length

 decision: find Hamiltonian cycle of length m

Decision problems are more convenient for formal investigation
of their complexity.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Class P

P: the class of decision problems that are solvable in O(p(n))

time, where p(n) is a polynomial of problem’s input size n

Examples:

 searching

 element uniqueness

 graph connectivity

 graph acyclicity

 primality testing (finally proved in 2002)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Class NP

NP (nondeterministic polynomial): class of decision problems
whose proposed solutions can be verified in polynomial time
= solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage
procedure that:

 generates a random string purported to solve the problem

 checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating
and verifying a solution on one of its tries

Why this definition?

 led to development of the rich theory called “computational
complexity”

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal
form (CNF) satisfiable, i.e., are there values of its
variables that makes it true?

This problem is in NP. Nondeterministic algorithm:

 Guess truth assignment

 Substitute the values into the CNF formula to see if it
evaluates to true

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)

Truth assignments:

A B C D E

0 0 0 0 0

. . .

1 1 1 1 1

Checking phase: O(n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

What problems are in NP?

 Hamiltonian circuit existence

 Partition problem: Is it possible to partition a set of n
integers into two disjoint subsets with the same sum?

 Decision versions of TSP, knapsack problem, graph
coloring, and many other combinatorial optimization
problems. (Few exceptions include: MST, shortest paths)

 All the problems in P can also be solved in this manner (no
guessing is necessary), so we have:

P NP

 Big question: P = NP ?

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

NP-Complete Problems

A decision problem D is NP-complete if it’s as hard as any

problem in NP, i.e.,

 D is in NP

 every problem in NP is polynomial-time reducible to D

Cook’s theorem (1971): CNF-sat is NP-complete

NP -complete

problem

NP problems

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

NP-Complete Problems (cont.)

Other NP-complete problems obtained through polynomial-

time reductions from a known NP-complete problem

Examples: TSP, knapsack, partition, graph-coloring and

hundreds of other problems of combinatorial nature

known

NP -complete

problem

NP problems

candidate

 for NP -

completeness

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

P = NP ? Dilemma Revisited

 P = NP would imply that every problem in NP, including all

NP-complete problems, could be solved in polynomial time

 If a polynomial-time algorithm for just one NP-complete

problem is discovered, then every problem in NP can be

solved in polynomial time, i.e., P = NP

 Most but not all researchers believe that P NP , i.e. P is a
proper subset of NP

NP -complete

problem

NP problems

