## Lower Bounds

## Lower bound: an estimate on a minimum amount of work

 needed to solve a given problemExamples:
\& number of comparisons needed to find the largest element in a set of $n$ numbers
$\Omega$ number of comparisons needed to sort an array of size $n$
\& number of comparisons necessary for searching in a sorted array
\& number of multiplications needed to multiply two $n$-by- $n$ matrices

## Lower Bounds (cont.)

\& Lower bound can be

- an exact count
- an efficiency class ( $\Omega$ )
\& Itight lower bound: there exists an algorithm with the same efificiency as the lower bound

Problem
sorting
searching in a sorted array element uniqueness
$n$-digit integer multiplication multiplication of $\boldsymbol{n}$-by- $\boldsymbol{n}$ matrices

Lower bound
$\Omega(n \log n)$
$\Omega(\log n)$
$\Omega(n \log n)$
$\Omega($ II $)$
$\Omega\left(n^{2}\right)$

Tightness
yes
yes
yes unknown
unknown
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
of trivial lower bounds
\& information-theoretic arguments (decision trees)
\& adversary arguments
\& problem reduction
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Trivial Lower Bounds

## Trivial lower bownds: based on counting the number of items

 that must be processed in input and generated as output
## Examples

o finding max element
\& polynomial evaluation
\& sorting
\& element uniqueness
o Hamiltonian circuit existence

Conclusions
\& may and may not be useful
\& be careful in deciding how many elements must be processed
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3ra ed., Un. 11 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Decision Trees

Decision tree - a convenient model of algorithms involving comparisons in which:
\& internal nodes represent comparisons
\& leaves represent outcomes
Decision tree for 3-element insertion sort


## Decision Trees and Sorting Algorithms

\& Any comparison-based sorting algorithm can be represented by a decision tree

ภ Number of leaves (outcomes) $\geq n!$
ภ Height of binary tree with $n!$ leaves $\geq\left\lceil\log _{2} n!\right\rceil$
\& Minimum number of comparisons in the worst case $\geq\left\lceil\log _{2} n!\right\rceil$ for any comparison-based sorting algorithm

ภ $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$
ภ This lower bound is tight (mergesort)

## Adversary Arguments

Aldversary argument: a method of proving a lower bound by playing role of adversary that makes algorithm work the hardest by adjusting input

Example 1: "Guessing" a number between 1 and $n$ with yes/no questions
Adversary: Puts the number in a larger of the two subsets generated by last question

Example 2: Merging two sorted lists of sive $n$

$$
a_{1}<a_{2}<\ldots<a_{n} \text { and } b_{1}<b_{2}<\ldots<b_{n}
$$

Adversary: $a_{i}<b_{j}$ iffi $i<j$
Output $b_{1}<a_{1}<b_{2}<a_{2}<\ldots<b_{n}<a_{n}$ requires $2 n-1$ comparisons
Oi adjacent elementis

## Lower Bounds by Problem Reduction

Idea: If problem $P$ is at least as hard as problem $Q$, then a lower bound for $Q$ is also a lower bound for $P$.
Hence, find problem $Q$ with a known lower bound that can be reduced to problem $P$ in question.

Example: $P$ is finding MST for $\boldsymbol{n}$ points in Cartesian plane
$Q$ is element uniqueness problem (known to be in $\Omega(n \log n)$ )

## Classifying Problem Complexity

Is the problem tractable, i.e., is there a polynomial-time $(O(p)(n))$ algorithm that solves it?

Possible answers:
\& yes (give examples)
\& no

- because it's been proved that no algorithm exists at all (e.g., Turing's halting problem)
- because it's been be proved that any algorithm takes exponential time
unknown
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Problem Types: Optimization and Decision

\& Optimization problem: find a solution that maximizes or minimizes some objective function
\& Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.
E.g.: traveling salesman problem
\& optimization: find Hamiltonian cycle of minimum length
\& decision: find Hamiltonian cycle of length $\leq m$

Decision problems are more convenient for formal investigation of their complexity.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 ©2012 Pearson

## Class $P$

$\underline{P}$ : the class of decision problems that are solvable in $O(p(n))$ time, where $p(n)$ is a polynomial of problem's input size $n$

## Examples:

\& searching
\& element uniqueness
\& graph connectivity
ภ graph acyclicity
\& primality testing (finally proved in 2002)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Class NP

NP (nondeterministic polymomial): class of decision problems whose proposed solutions can be verified in polynomial time = solvable by a nondeterministic polynomial algorithm

A nondeterministic polymomial altorithm is an abstract two-stage procedure that:
\& generates a random string purported to solve the problem
\& checks whether this solution is correct in polynomial time
By definition, it solves the problem if it's capable of generating and verifying a solution on one of its tries

Why this definition?
\& led to development of the rich theory called "computational complexity"
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## Example: CNF satisifability

Problem: Is a boolean expression in its conjunctive normal form (CNI) satisfiable, i.e, are there values of its variables that makes it true?

This problem is in NP. Nondeterministic algorithm:
\& Guess truth assignment
\& Substitute the values into the CNI formula to see if it evaluates to true

Example: $(A|\neg B| \neg C) \&(A \mid B) \&(\neg B|\neg D| E) \&(\neg D \mid \neg E)$
Truth assignments:
ABCDE
00000
11111
Checking phase: $O(n)$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## What problems are in NP?

\& Hamiltonian circuit existence
\& Partition problem: Is it possible to partition a set of $n$ integers into two disjoint subsets with the same sum?
\& Decision versions of TSP, knapsack problem, graph coloring, and many other combinatorial optimivation problems. (Few exceptions include: MST, shortest paths)
\& All the problems in P can also be solved in this manner (no guessing is necessary), so we have:

$$
P \subseteq N P
$$

\& Big question: $P=N P$ ?

## NP-Complete Problems

A decision problem $D$ is NP-complete if it's as hard as any problem in $N P$, i.e.,
\& $D$ is in NP
\& every problem in $N P$ is polynomial-time reducible to $D$


Cook's theorem (1971): CNF-sat is NP-complete
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

## NP-Complete Problems (cont.)

Other $N P$-complete problems obtained through polynomialtime reductions from a known $N$ P-complete problem


Examples: TSP, knapsack, partition, graph-coloring and hundreds of other problems of combinatorial nature

## $P=N P$ ? Dilemma Revisited

\& $P=N P$ would imply that every problem in $N P$, including all NP-complete problems, could be solved in polynomial time
\& If a polynomial-time algorithm for just one $N P$-complete problem is discovered, then every problem in $N P$ can be solved in polynomial time, i.e., $P=N P$

\& Most but not all researchers believe that $P \neq N P$, i.e. $P$ is a proper subset of NP
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 11 O2012 Pearson

