Introduction to Socket
Programming

Disclaimer: These slides are
An Open Source Approach bOI'I'OWCd from the fOHOWiIlg

i textbooks

Data Communicatiqns
AND Networking

Computer Networking
A Top-Down Approach

BEHROUZ A. FOROUZAN

Thoshitha Gamage, Ph.D.
SIUE KUROSE | ROSS

Logical Connection at the Application Layer

Legend

* Communication at the
application layer is logical, not
physical

* End points assume the
existence of a two-way logical
connection between them for
communication

¢ Actual communication takes

place through several devices
e.g. Alice, R2, R4, R5, R6, and bob

Sky Research Alice
Alice Application [<——
Transport [__J
\\' = oot \\, 2 Network [__]
L= Data link [__]
2 Physical [__]]

To other
ISPs

To other
ISPs

e
lllla R3

p
r,
T4y oy,
4y

— iy,

Switched
WAN

National ISP Eilluu@ RS
p.

""a J

'o
?,
s,
o ||u||||u|®
-
=
=
=
-.
=
=
=
=
=
=
N
=
-.

To other
ISPs

-

-

I Point-to-poin[WAN A

E LAN switch

WAN switch

”

\%“@@e

Bob
Scientific Books

Logical Connection 0
=
Q
=
ol
=

Bob

by Application

[__] Transport
(] Network
[Data link
(] Physical

Client-Server vs. P2P Paradigm

Legend

Client

D Switch
6 Router

Ay Clicnt-server communication

Server

X%

Client-Server - @ LAN

’
Internet N e,
n

P2P

Internet

Client-Server Programming

Communication occurs between
two processes — programs in
execution

o A client and a server

Client program initializes the
communication; send the reqguest

Server program waits for client
requests, process, and responds to
client program

* Server program must be running
before client makes the request

=

j)
L= 5
-\é >

Client site Server site ‘

l Application layer | [Application layer

Transport layer I

Transport layer I

Data-link layer I Data-link layer I

| [
l Network layer I | Network layer I
| |
| |

Physical layer I Physical layer I

Operating System Operating System

Application Programming Interface
(API)

* The end-to-end processes must tell
the lower four TCP/IP suite layers
to

* Open the connection

e Sendand Receive data from the other
end

* (Close the connection

* The lower four layers are built
into the OS with an API presented
to the Application Iayer

* ec.g Socket Interface, TLI, STREAM

Sockets

e Core Idea: Use instructions already
designed for sources and sinks in
programming languages

e E.g file I/O — source:
keyboard, sink: terminal

e Add ONLY new sources and sinks
(for communication) w/o
changing read/ write instructions

* NOT a physical entity like a file; an

abstraction

e End-to-end communication is
between two sockets

e Has NO buffer to store data

to be sent or received Application

layer

* Not capable of sending or
receiving data

* Acts as just a reference/label

Application program

A
read write read] | write read write
[— 1 Vv
Keyboard Monitor File Socket
(source) (sink) (sink and source) (sink and source)

Client

process

Request l TRcspcmsc

Socket

Log_ical Connection

Server
process

Response l Tchuesl

Socket

Application

layer

Socket Interface in Linux (kernel 2.7.11)

Socket interface -—

net/socket.c
net/ipv4/af_inet.c
net/ipv4/{tcp* udp*}
net/ipv4/{ip*,icmp*}
net/ethernet/eth.c
drivers/net/*.{c,h}

Application

|

"Socket Library hp b

BSD Socket

\ /INET Socket

"TCP/UDP

IP

| ARP

ICMP

va

cthernet-header builder

ethernet NIC Driver

User-space

Kernel-space

Socket Addressing

e Communication is between two
(end-point) sockets

* Need a pair of socket addresses
* Local (sender)

* Remote (recetver)

* The local address one way is the
remote address the other way

e A socket address

* Local address provided by the OS
* OS knows the IP address

* Port either assigned if a
standard port or defined if
otherwise

e Remote address

e Server: Finds on the client
connection request

e (Client: Should know server
address before establishing

* Defines the computer which connectivity
runs the client or the.server Manually
* IP address (32-bit) * Explore and find
 Also defines the application (through DNS)
running on the computer
* Port (16-bit) — ,
32 bits 16 bits
IP address Port number

Socket Address

Transport Layer Services

* Applications depend on services provided by the transport layer for
communication
* No physical communication at the application layer

e Common TCP/IP suite transport layer protocols

e TCP

. Comecﬂbﬁ—oﬂeﬂfeql — two end_points establish a logical connection
before communication begins
o Handshake
* Data exchanged in segments; resends allowed — reliable

* Byte stream service
« UDP
* FHach message an independent entity encapsulated in a datagram —
connectionless
* No resends for corrupt or lost datagrams — wnreliable
* Message-oriented, promotes speed over reliability

* Datagram service

* SCTP

* Combination of TCP and UDP — connection-oriented, reliable,
message-oriented

Standard Sockets

Protocol Description
Echo Echoes back a received datagram
Discard Discards any datagram that is received
Users Active users

Returns the date and the time

Returns a quote of the day

Returns a string of characters

File Transfer Protocol

Terminal Network

Simple Mail Transfer Protocol

DNS Domain Name Service

DHCP Dynamic Host Configuration Protocol

TFTP Trivial File Transfer Protocol

HTTP
111 RPC
123 NTP

161, 162 | SNMP

Daytime
Quote
Chargen
FTP
TELNET
SMTP

2|2 |2 |||l || 2|20

Hypertext Transfer Protocol
Remote Procedure Call
Network Time Protocol

2|2 | 2| <2

Simple Network Management Protocol

Iterattve Communication : UDP

e (Client and Server ONLY use one socket each
e Server socket lasts forever

* Client socket i1s closed when the client process
terminates

e Different clients use different sockets

* Server creates only one socket. Changes remote socket
address for each new client connection

Legend ;
Server
Client | 2% [l:l Socket [l Datagram] yTTTTTT
-
i

E o'_ Request . e E
: < ' Response =) i
Client 2 i{;ﬂ?"* | E
E ©—— Request F > i
: & Response —ﬂ i
Sy I gl N

I[terative Communication : TCP

e Server uses two different sockets
* One used to establish connection — Zsten socket

* Used to listen for incoming connection requests
from clients

* One for data transfer — socket

* Connection establishment separated from exchange

€ Connection establishment

©

@ Connection establishment

2]
Create

>

Server il

[Listen socket
] Socket

UDP Client/Server Socket Interaction

Server Client

create socket:
create socket, port= x:

clientSocket =
serverSocket = socket(AF_INET,SOCK_DGRAM)
socket(AF_INET,SOCK_DGRAM)
l Create datagram with server IP and

/ portzx; send datagram via
read datagram from sei¥erSocket clientSocket

!

write reply to serverSocket v
specifying client address, \ read datagram from clientSocket

port number

Close clientSocket

UDP Flow Diagram
Legend Socket - ? il .l

(" h (Create socket)
E Empty socket
E Half-filled socket y
(Bind socket
E Filled socket
L) Infinite|
n loop
Socket
Create socket (Receive request)
g Block
[Send request) Rec >
O Unblock
¥ Datagram
[Receive response) Handl :
andaie reques
and create
response
Block
Unblock O P -
= esponse (Send response)
Handle Datagram I

response

[Destroy socket)

TCP Client/Server Socket Interaction

Server Client

create socket,

port=x, for incoming request:

serverSocket = socket()

1

wait for incomin _

. & TCP create socket, connect to hostid, port=x
connection request <@mm == =-— == - == ==
connectionSocket = connection setup

clientSocket = socket()
serverSocket.accept()

v
_

/ send request using clientSocket
read request from connectionSocket

write reply to connectionSocket === /
1 > read reply from clientSocket
Close connectionSocket 1

Close clientSocket

TCP Flow Diagram

Legend

s
Server .I

Listen Start
E Empty socket socket
E Half-filled socket Create socket
P ' E Filled socket
% Clients
. >——————
Start L ;
? o LT
b\'\s e -° e
Create socket o e.“:vt’a: et Ir}gglgte| .
o e
o
Block Block
Unblock Unblock
Data transfer Socket
Client <—() j—— Server
Data-transfer > .) >] Data-transfer

Handle
response

Destroy socket

Connection termination

Handle request
and create
response

Destroy socket

Socket Data Structures

Length Family

Family Type Protocol

Local Socket Address

Remote Socket Address

Socket

Port number

IP address

Unused

Socket address

Socket Read /Write Inside Out

User Space
e o Chient 777770
| 1
1 v I v v
i Server socket creation send data 1 | Client socket creation send data]
1 > > : | —_— » —— > :
1 T T = e e 1 | I 1 1
: : socket() :: bind() i listen() ' accept() 1 write() i1 socket() : : connect() I read() 1
. [N | L M 1 Ll
& ! & | 1) L1l TN | |] L il
| : ;: T T T T I TN I = I 1 Y 1!
| T sys_lsocketca]] | —_ :: sys_'write :: 1 : — sys_socketcall — I sys_read | :
Iy I ' l 1 iy ! ! * h !
11 1 1 1!
: I sys s'.‘(;cket :I {F . : I . i syS gcce t ''do_sock write' : ! sys_socket | : sys_connect ': do_sock read !
|: ys_ |: sys_bind |: sys_listen :I ys_ Pt Q0_ *— o1 Sys_ :I ys_ I _ - |
1 11 1! 1 1!
Iy * 1 I I | i 1! I
| | . . | . . . | 1 1 . 1 1|l
i : sock_¢reate |: inet bind | : inet 'listen :: inet_accept :: sock_ :: i : sock_create : , inet_stream | sock i :
1y 1 1y n & sendmsg I i1 _connect 1 recvmsg !
. o 1 1!
: : inet_create :: : : : I tcp_dccept 11 11 1 inet_create : : |: 1l
1 11 . 1! 1 1!
1 1 1 1 |
| :_ |: | |l :] . . inet_ 0ol : . tep_vd_ " sock_common_ |
jmm e e e e e e : wait_for_ :: sendmsg I: 1 :] getport 1 recvmsg 1 :
. 1 | |
: | connection i T :: * ,: 1
1 11 1 1 1 1|l
1 1 |
1 1 1 tcp_ "ot :I tep_vd_ g tep_ |
Lol sendmsg 1l | locmm oo connect | recvimsg 1!
: A | + 1" : ¢ |: 1!
1 11 1
1 1 1 1 1
| : tep_ :: | 1 inet_wait I memcpy_ | :
| . |
: | write_xmit : : _connect ,: tolovec 11
1 1 1 1!
1 1 |
| I 1 e e e e W 1!
i R e "o 'y]
R I I T D 1
Kernel Space
Internet

Socket Read /Write Inside Out

Y

linux/sched.h linux/fs.h linux/dentry.h linux/fs.h
struct files_struct . struct file . struct dentry . struct inode -
count f list _J dcount | [T = e D
file lock T dentry d flags union u
max_Tfds max_Tds d_inode struct socket
max_fdset f vfsmnt d parent | | | | = e
next fd fop | | e inode
fd[O] T count file
fd[1] 1 | ¥ _flags sk
...... f_mode e
fd[255] fpos | e
ipv4/tcp_ipvd.c net/sock.h net/sock.h
struct tcp_ func struct proto struct sock ‘
tcp _close - close d_addr -
tcp _v4 connect -< connect s_addr
opened Linux socket tcp _disconnect < disconnect dport
tcp_accept - accept sport
tcp_ioctl < ioctl bound_dev_if
tcp_v4 _init _sock - init ||| e
tcp v4 destory sock [« destory receive_queue
tcp_shutdown -t shutdown write_queue
tcp setsockopt - setsockopt | [| @ e
tcp_getsockopt - getsockopt — proto
tcp_sendmsg < sendmsg | | e
tcp_recvmsg - recvmsg union tp_pinfo

struct tcp_opt

	Introduction to Socket Programming
	Logical Connection at the Application Layer
	Client-Server vs. P2P Paradigm
	Client-Server Programming
	Sockets
	Socket Interface in Linux (kernel 2.7.11)
	Socket Addressing
	Transport Layer Services
	Standard Sockets
	Iterative Communication : UDP
	Iterative Communication : TCP
	UDP Client/Server Socket Interaction
	UDP Flow Diagram
	TCP Client/Server Socket Interaction
	TCP Flow Diagram
	Socket Data Structures
	Socket Read/Write Inside Out
	Socket Read/Write Inside Out

