
T & TR 09:30 – 10:45 a.m. EB 0140 CS 456 Fall 2018

CS 456 : Advanced Algorithms
Programming Assignment #01

Total Points: 150

Assigned Date : Thursday, September 06, 2018

Due Date : Thursday, September 20, 2018 @ 09:29:59 a.m.

Objectives

Your first programming assignment is to implement Kruskal’s and Prim’s minimum spanning tree
algorithms. The main objective of this assignment is to empirically validate the most efficient imple-
mentation of a minimum spanning tree algorithm. More importantly, you are fully expected to firsthand
experience how, even for the same algorithm, the underlying data structure influences the overall run-
time. Hence, the sub-objectives of this assignment are to:

1. implement Priority Queue -based Prim’s and Kruskal’s algorithms;
2. implement a Min-Heap -based Prim’s algorithm;
3. implement a Union-Find -based Kruskal’s algorithms; and
4. validate the theoretical best runtime complexities for both algorithms using empirical results.

Also, you are expected to think about and address the following questions in your report:

a. At what size n0 does your implementation(s) start to exhibit asymptotic complexity?
b. How does the graph density affect runtimes of each algorithm?
c. What is the characteristic of your input required to generate average complexity. How about best

case and worst case scenarios?
d. How do you plan to generate the appropriate input required to exhibit different asymptotic behav-

iors?
e. How does the measured run time correspond to the abstract complexity analysis using operation

counting (as discussed in class)?

Thus, you are expected to properly demonstrate that you were able to achieve these objectives through
documented work listed in your project report.

Instructions

• This is an individual assignment. Do your own work.
• Start early!! Take backups of your code often!!. Use of a version control software is highly

recommended!
• Make sure to test your program properly before your final submission. It is highly recommended

to test build and run your submission on the home server, home.cs.siue.edu.

last updated: 09/02/18 @ 8:41am 1



T & TR 09:30 – 10:45 a.m. EB 0140 CS 456 Fall 2018

• You may use any programming language of your choice out of C, C++, Java, Python or Go as
these are all available on the home server. However, you must make sure that your code com-
piles and runs on a typical Linux machine. Absolutely DO NOT include executables with your
submissions.

• A Makefile is mandatory. Whether or not your program needs to be compiled, have it echo
instructions to run the program.

• For input, the program must take as a command line argument the file path to the input file
containing the graph information and another argument which is to be the output file name.
For example ./kruskal <inputfile> <outputfile> . Be aware that the file locations will most
likely NOT be in the same directory as the executable

• For output, the program should print to a file that includes measured runtime, the MST found,
and the cost of the MST. See I/O specifications below.

• The report part of your solution must be produced using a word processor. LATEX is highly recom-
mended.

• Any figures, graphs, plots, etc., should also be produced using appropriate computer applications.
If using LATEX, the pgfplots package is very useful for making all sorts of graphs.

• Be professional with your reports; properly label and title your graphs; properly caption and cross-
reference your figures; make sure to include all sections/subsection mentioned below.

• Your final report should be in PDF format. No exceptions.
• Follow a good coding standard. Use the Google C++ coding standard found here http://goo.gl/
1rC1o, if you don’t already follow one.

I/O Specifications

Input

Your program should be capable of reading an input file that describes a graph using the following
format:

<source-vertex> <destination-vertex>:<weight> <destination-vertex>:<weight> ...

An example line from the input file would look like 0 1:4 2:4 3:1 4:4 5:4 6:2 7:1 8:1 9:4

Each line corresponds to edges coming from one vertex. This example has an edge from 0 to 1 with
weight 4, 0 to 2 with weight 4, 0 to 3 with weight 1, etc.

Your program should use this input file to calculate the minimum spanning tree for the given graph and
generate an output file that lists the MST based on Kruskal’s greedy selection order. It is also possible
that there are multiple graphs per file meaning that there could be two groups of vertices that are not
connected to each other in any way.

Output

Your output file should list the time that it took your program to find the MST(s), along with the total
cost of each MST.

The format of the graph should use the format of the input.

last updated: 09/02/18 @ 8:41am 2

http://goo.gl/1rC1o
http://goo.gl/1rC1o


T & TR 09:30 – 10:45 a.m. EB 0140 CS 456 Fall 2018

The instructor will independently verify the programmatical correctness of your submitted solution
using his own test file that may include a large number of vertices and edges. Thus, you are also not to
assume any particular size limitation of the graph your program can handle.

Deliverables

The due date of this assignment is Thursday, September 20, 2018 @ 09:29:59 a.m. A dropbox will be
opened for submission on Moodle before the due date. A complete solution comprises of:

• [120 points] A report that includes the followings:

– Motivation and background of the experiment. Use this section to explain succinctly your
approach to achieving the objectives listed above. [5 points]

– A separate section for each implementation [45 x 2 points]:
∗ Pseudocode of the algorithms used in the implementation. If multiple implementations

use the same algorithm, only one pseudocode is needed. If it is repeated, state as such.
The pseudo code will count for each implementation, so if it is used twice, it will be worth
10 points total. [5 points]

∗ Correctness proof of the algorithms used in the implementation. Again, only one is
needed even if the algorithm is used in multiple implementations just like the pseudo
code. [10 points]

∗ Testing Plan (for best/average/worse cases). Discuss in particular, what you consider to
be the true runtime complexity of the algorithm and how you plan to separate that from
auxiliary tasks such as input processing and output file generation. You must properly
justify any assumptions you make. [5 points]

∗ Expected Results: A description of the expected asymptotic behavior of your program.
You may (and probably are advised to) use your pseudocode to aid this explanation.
[5 points]

∗ Empirical Results: Observations from your experiments. You should probably repeat
each experiment several times to eliminate any statistical errors, but list the outcomes of
each run in tabular format. Use enough data points such that a clear pattern of execution
time is developed. You must include a graph of the run time and convince the reader that
the graph follows the trend you say it does. [10 points]

∗ Justification of your observations. You must be able to justify and/or argue the empirical
asymptotic behavior you are observing. [10 points]

– Conclusion and overall performance comparisons. [25 points]

Note: Professionally format and write your report. Treat your report as if you would be submitting
it for publication. Failing to do so can reduce your score by as much as 10%.

• [30 points] A compressed tarball of the directory containing ONLY your source code files, and a
Makefile. Do not include executables in this tarball; we will do a fresh compile of your code using
your Makefile. To create a compressed tarball of the directory source, use the following command:
tar -zcvf name-111-pr1.tar.gz source/. Obviously, change the name to your last name and
111 to the last three digits of your SIUE ID.

– Correct implementation of algorithms. [15 points]
– Correct input procedures. [5 points]
– Correct output procedures. [5 points]
– Good coding practices e.g. naming conventions, readable code, commenting, etc. [5 points]

last updated: 09/02/18 @ 8:41am 3



T & TR 09:30 – 10:45 a.m. EB 0140 CS 456 Fall 2018

Each implementation should have its own program. In this project, that would be one for Kruskal’s
with union-find, one for Kruskal’s with priority queue, and one for Prim’s.

Generating Test Graphs

To generate random graphs, the following program is available to you via Github https://github.
com/SnugglyCoder/graph-generator. Clone it, build it (a makefile is included), and use it on a Linux
machine with make. The repository readme contains instructions on how to use and run the program.
There are also issues listed in the repository. Hence, feel free to contribute to the open source project
and help it grow and become more useful for future use!

Extra Credit Options

Faster Algorithms

Runtime of both these algorithms can be further improved using more sophisticated (and tedious to
implement) data structures such as Fibonacci Heaps (CLRS Ch.19) and Relaxed Heaps (http://www.
cs.siue.edu/~tgamage/relaxed-heap.pdf). Time permitting, you may attempt to empirically validate
and compare the runtime complexity of one (or both) spanning tree algorithms based-off of one of
these advance data structures against the core assignment tasks. There are also linear-time randomized
algorithms that you may be interested in validating. Some information can be found here https://
algs4.cs.princeton.edu/lectures/43MinimumSpanningTrees.pdf.
If you go down this path, your project documentation should be properly augmented to reflect your
“extra credit” work. Good for extra [45 points].

Graph Generator

Contribute to the graph generator project. There are some issues listed on the repository site. You can
make a contribution that is not listed as an issue. The points awarded will be commensurate with the con-
tribution. https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project/ is
a nice article on how to exactly that. This will be good practice using Git and making open source
contributions, something that is valued in the industry. Worth maximum [20 points].

last updated: 09/02/18 @ 8:41am 4

https://github.com/SnugglyCoder/graph-generator
https://github.com/SnugglyCoder/graph-generator
http://www.cs.siue.edu/~tgamage/relaxed-heap.pdf
http://www.cs.siue.edu/~tgamage/relaxed-heap.pdf
https://algs4.cs.princeton.edu/lectures/43MinimumSpanningTrees.pdf
https://algs4.cs.princeton.edu/lectures/43MinimumSpanningTrees.pdf
https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project/

