[_ower: Bounds
'

Yy v u
l.ower hound: an estimate on a minimum amount of:work
needed to solve a given problem

Examples:

number: of:comparisons needed to find the largest element
IN a Set of: N NUMIBEKS

number: oficomparisons Needed to sort an array ofisize n
NUMBEr: of: cCOMPAarisons Necessary. for searching inia sorted

array
number: offmultiplications needed to multiply tWo n-by-n
matrices

<~

<~
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[Lower: Boundls (cont.) '

[_ower: bound can be
an exact count
an efficiency class (Q)

Tight lower: bound: there exists an algorithm with the same
efficiency as the lower: bound

Problem [Lower: bound Tughtness
sorting Q(nlog n) \/ES
searching in a sorted array Q(log n) \/ES
element unigqueness Q(nlog n) \/ES
— n-cdigit integer multiplication Q(n) UunKnownN
:. multiplication of:n-by-n matrices  Q(n?) UnKNOWN
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Methods for Establishing LLower Bounds
I
trivial'lower: bounds
Information-theoretic arguments (decision trees)

adversary arguments

problem reduction
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Jirivaal [lLower Bounds
'y

Trivial lower bounds: based on counting the number ofiitems = *
that must be processed In INpuUt and generated as output

Examples
finding max element

polynomial evaluation
sorting
element unigueness

Hamiltonian circuit existence

Conclusions
may and may not be useful
<~
_"W | e careful in deciding how many. elements must be processed
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[Decision rees

I

Decision tree — a convenient model ofialgorithms involving™ =

11

comparisons in Which:
internal nodes represent comparisons

leaves FEPFESENT QULCOIMES

Decision tree for 3-element insertion sort




111

[Decision 1irees and Sorting Algorithms’"

vy
Any comparison-based sorting algorithm can be represented
Py a decision tree

Number ofileaves (outcomes) = nl
Heilght ofi binary tree with nl'leaves: = |_Iog2n!-|

Minimum number: of comparisons in the worst case = | log,n! |
for any comparison-based sorting algorithm

[og,n!|=nlog,n

Tthis lower bound is tight (Imergesort)
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Adversary Arguments
r'rs

Adversary arqument: & method of proving a lower bound by =~ =

playing role ofiadversary that makes algorithmiwork the hardest
Py adjusting mput

Example 1: “Guessing” a number between 1 and n with yes/no
guestions

Adversary: Puts the number ina larger: of: the two sulbsets
generated by last question

Example 2: Merging two sorted lists ofisize n
y<a<..<a and by <b,<...<hb.
Adversary:a; < b; iff i< |
mOutputh, <a; <hb,<a, <...< b, <a, Fequires 2n-1 comparisons
:=of adjacen
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[Lower: Bounds by, Problem Reduction '

Idea: [T problem Pis at least as hard as problem @, then a lower

pound for Qs also a lower: bound for: P.

Hence, find problem Q with a known: lower: bound: that can
e reduced to problem P in question.

Example: Pis finding MSH: for n points in Cartesian plane
Q1S element uniqueness problem (known to be in Q(nlogn))

i

i

i
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Classifying Problem Complexity. 1Y,

rVru
IS the problem tractable, 1.e., I1s there a polynomial-time (O(p(n))

algorithm that solves I1t?

Possible answers:
Ves (give examples)

Nno

because it’s been proved that no algorithm exists at all
(e.g., Turing’s nalting problem)

because it’s been be proved that any algorithm takes
exponential time

- m

|
=% unknown
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Problem Types: Optimization and [Decision
Irr
Qptimization problem: find a solution that maximizes or:

MINIMIZES SOME okjective function

[Decision problem: answer: yes/no to a guestion

Many problems have decision and optimization VErsIions.

E.0.: traveling salesman problem
optimization: find Hamiltonian cycle of: minimum length
decision: find Hamiltonian cycle of lengthi< m

[Decision problems are more convenient for formal investigation
S ofitherr complexity.
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Class P
lll_

P the class of:decision problems that are solvable in O(p(n)s :
time, where p(n) is a polynomial of problem’s input size N

Examples:
searching

element uniIgueness
graph connectivity.
graph acyclicity

primality testing (finally provedin 2002)
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson
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Class NP
'yl

rra
NP (nondeterministic polynomial): class of: decision problems
Whose proposed solutions can e verified i polynomial time
= solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial algoritnm i1s an abstract two-stage
procedure that:

generates a randomistring purported to solve the problem
checks whether this solutioniis correct in polynomial time

By definition, it solves the problem if it’s capable of generating
and verihying a selution on one ofIts tries

Ay this definition?
"y | led to development of the rich theory called “computational

_"m  complexity”
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Example: CNE satisfiability
I
Problem: IS a boolean expression in its conjunctive normal

form (CNFE) satisfiable, 1.e., are there values ol Its
variables that makes It true?

This problem is intNP. Nondeterministic algorithims:

(GUESS truth assignment
Substitute the values into the CNFE formula to see if it
evaluates to true

Example: (A | 7B | 7C) & (A | B) & (7B | 7D | E) & (7D'| =E)
Jiruth assignments:
ABCDE
000000

' 11111
Sy, Checking phase: O(n)
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\What problems are in NP2
r'rs

Yy v u
Hamiltonian circuit existence

Partition propblems: Is it possible to partition a set ofin
INtEgers Into two disjoint subsets with the same sum?

[Decision versions off ISP, knapsack problem, graph
coloring, and many/ other combinatorial optimization
problems. (Few exceptions include: MSHTy shortest paths)

All'the problems in P.can also be solved in this manner: (no
gUESSING IS Necessary), SoWe have:

P.c NP

Big question: P.= NP?
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NP-Complete Problems
Iy

rra
A decision problem D'is NP-complete if it’s as hard as any

problemim NP; Ie.,
Dasin NP
every problemiim NPIs polynomial-time reducible to D

- W
= : Cook’s theorem (1971): CNF-sat 1s NP-complete
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NP-Complete Problems (cont.)
It

Other NP-complete problems obtained through polynomial-
time reductions from a known NP-complete problem

Examples: 'SP, knapsack, partition, graph-coloring and
nhundreds ofiother problems oficombinatorial nature

i

i

iid
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P = NP.? Dilemma Revisited
r'r

P* = NP would imply that every problemiin NB; including all®
NP-complete problems; could be solvediin polynomial time

If:a polynomial-time algorithm for just one NP-complete
problem s discovered, then every problem NP can be
solved in polynomial time, 1.e., P- = NP

Most but not all researchers believe that P.# NP, 1.e. P.1S a

=™  proper: subset of NP
- m
|
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