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Lower Bounds

Lower bound: an estimate on a minimum amount of work 

needed to solve a given problem

Examples:

 number of comparisons needed to find the largest element 

in a set of n numbers

 number of comparisons needed to sort an array of size n

 number of comparisons necessary  for searching in a sorted 

array

 number of multiplications needed to multiply two n-by-n 

matrices 
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Lower Bounds (cont.)

 Lower bound can be

• an exact count 

• an efficiency class ()

 Tight lower bound: there exists an algorithm with the same 

efficiency as the lower bound

Problem Lower bound Tightness

sorting (nlog n)                          yes

searching in a sorted array (log n)                             yes

element uniqueness                              (nlog n)                          yes

n-digit integer multiplication              (n)                            unknown

multiplication of n-by-n matrices       (n2)                           unknown
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Methods for Establishing Lower Bounds

 trivial lower bounds

 information-theoretic arguments (decision trees)

 adversary arguments

 problem reduction
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Trivial Lower Bounds

Trivial lower bounds: based on counting the number of items 
that must be processed in input and generated as output

Examples
 finding max element

 polynomial evaluation

 sorting

 element uniqueness

 Hamiltonian circuit existence

Conclusions 
 may and may not be useful

 be careful in deciding how many elements must be processed
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Decision Trees

Decision tree — a convenient model of algorithms involving 

comparisons in which:

 internal nodes represent comparisons

 leaves represent outcomes 

Decision tree for 3-element insertion sort

a < b

b <  c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb

yes

a < c < b c < b < a

no
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Decision Trees and Sorting Algorithms

 Any comparison-based sorting algorithm can be represented 
by a decision tree

 Number of leaves (outcomes)  n!

 Height of binary tree with n! leaves   log2n!

 Minimum number of comparisons in the worst case  log2n!
for any comparison-based sorting algorithm

 log2n!  n log2n

 This lower bound is tight (mergesort)
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Adversary Arguments

Adversary argument: a method of proving a lower bound by 

playing role of adversary that makes algorithm work the hardest

by adjusting input 

Example 1: “Guessing” a number between 1 and n with yes/no

questions

Adversary:  Puts the number in a larger of the two subsets
generated by last question

Example 2:  Merging two sorted lists of size n

a1 < a2 < … < an and  b1 < b2 < … < bn

Adversary: ai < bj iff  i < j

Output b1 < a1 < b2 < a2 < … < bn < an requires 2n-1 comparisons

of adjacent  elements
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Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower

bound for Q is also a lower bound for P.           

Hence, find problem Q with a known lower bound that can

be reduced to problem P in question.

Example: P is finding MST for n points in Cartesian plane 

Q is element uniqueness problem (known to be in (nlogn))
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Classifying Problem Complexity

Is the problem tractable, i.e., is there  a polynomial-time (O(p(n)) 

algorithm that solves it?

Possible answers:

 yes (give examples)

 no

• because it’s been proved that no algorithm exists at all 

(e.g.,  Turing’s halting problem)

• because it’s been be proved that any algorithm takes 

exponential time

 unknown
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Problem Types: Optimization and Decision

 Optimization problem: find a solution that maximizes or 
minimizes some objective function

 Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem

 optimization: find Hamiltonian cycle of minimum length

 decision: find Hamiltonian cycle of length  m

Decision problems are more convenient for formal investigation 
of their complexity.
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Class P

P: the class of decision problems that are solvable in O(p(n)) 

time, where p(n) is a polynomial of problem’s input size n

Examples:

 searching

 element uniqueness

 graph connectivity 

 graph acyclicity

 primality testing (finally proved in 2002)
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Class NP

NP (nondeterministic polynomial): class of decision problems 
whose proposed solutions can be verified in polynomial time 
= solvable  by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage 
procedure that:

 generates a random string purported to solve the problem

 checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating 
and verifying a solution on one of its tries  

Why this definition?

 led to development of the rich theory called “computational 
complexity”
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Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal 
form (CNF) satisfiable, i.e., are there values of its 
variables that makes it true?

This problem is in NP.  Nondeterministic algorithm:

 Guess truth assignment

 Substitute the values into the CNF formula to see if it 
evaluates to true

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)

Truth assignments:

A B C D E

0  0  0  0  0

.   .   .

1  1  1  1  1

Checking phase: O(n)



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

What problems are in NP?

 Hamiltonian circuit existence 

 Partition problem: Is it possible to partition a set of n
integers into two disjoint subsets with the same sum?

 Decision versions of TSP, knapsack problem, graph 
coloring, and many other combinatorial optimization 
problems.  (Few exceptions include: MST, shortest paths)

 All the problems in P can also be solved in this manner (no 
guessing is necessary), so we have: 

P  NP

 Big question:  P = NP ?



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 11 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

NP-Complete Problems

A decision problem D is NP-complete if it’s as hard as any 

problem in NP, i.e.,

 D is in NP

 every problem in NP is polynomial-time reducible to D

Cook’s theorem (1971): CNF-sat is NP-complete

NP -complete

problem

NP  problems
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NP-Complete Problems (cont.)

Other NP-complete problems obtained through polynomial-

time reductions from a known NP-complete problem

Examples: TSP, knapsack, partition, graph-coloring and

hundreds of other problems of combinatorial nature

known

NP -complete

problem

NP  problems

candidate

 for  NP  -

completeness
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P  = NP ? Dilemma Revisited

 P  = NP would imply that every problem in NP, including all 

NP-complete problems, could be solved in polynomial time

 If a polynomial-time algorithm for just one NP-complete 

problem is discovered, then every problem in NP can be 

solved in polynomial time, i.e., P  = NP

 Most but not all researchers believe that P  NP , i.e. P is a 
proper subset of NP

NP -complete

problem

NP  problems


