What is an algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

problem

algorithm

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 @2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Euclid's Algorithm

Problem: Find ged (m, n), the greatest common divisor of two nonnegative, not both zero integers m and n
Examples: $\operatorname{gcd}(60,24)=12, \quad \operatorname{gcd}(60,0)=60, \quad \operatorname{gcd}(0,0)=?$

Euclid's algorithm is based on repeated application of equality

$$
\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)
$$

until the second number becomes 0 , which makes the problem trivial.

Example: $\operatorname{gcd}(60,24)=\operatorname{gcd}(24,12)=\operatorname{gcd}(12,0)=12$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Two descriptions of Euclid's algorithm

Step 1 If $n=0$, return m and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value fo the remainder to r Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.
while $n \neq 0$ do

```
r\leftarrowm\operatorname{mod}n
m\longleftarrown
n\longleftarrowr
```

return m
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 O2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Other methods for computing ged (m, n)

Consecutive integer checking algorithm

Step 1 Assign the value of $\min \{m, n\}$ to t
Step 2 Divide m by t. If the remainder is 0 , go to Step 3; otherwise, go to Step 4
Step 3 Divide n by t If the remainder is 0 , return t and stop; otherwise, go to Step 4
Step 4 Decrease t by 1 and go to Step 2
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Other methods for $\operatorname{gcd}(m, n)$ [cont.]

Middle-school procedure

Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common prime factors and return it as $\operatorname{gcd}(m, n)$

Is this an algorithm?
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Sieve of Eratosthenes

Input: Integer $n \geq 2$
Output: List of primes less than or equal to n
for $p \longleftarrow 2$ to n do $A[p] \leftarrow p$
for $p \leftarrow 2$ to $\lfloor\sqrt{ } n\rfloor$ do
if $A[p] \neq 0 / / p$ hasn't been previously eliminated from the list $j \leftarrow p^{*} p$
while $j \leq n$ do

$$
\begin{aligned}
& A[j] \leftarrow 0 / / \text { mark element as eliminated } \\
& j \leftarrow j+p
\end{aligned}
$$

Pxample: 234567891011121314151617181920
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
\& Theoretical importance

- the core of computer science
\& Practical importance
- A practitioner's toolkit of known algorithms
- Framework for designing and analyying algorithms for new problems
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Two main issues related to algorithms

\& How to design algorithms
\& How to analyze algorithm efficiency
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Algorithm design techniques/strategies

\& Brute force
\& Divide and conquer
\& Decrease and conquer
\& Transform and conquer
\& Space and time tradeofis
\& Greedy approach
\& Dynamic programming
\& Iterative improvement

ภ Backtracking
\& Branch and bound
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of algorithms

\& How good is the algorithm?

- time efficiency
- space efficiency
\& Does there exist a better algorithm?
- lower bounds
- optimality
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Important problem types

\& sorting
\& searching
\& string processing
\& graph problems
\& combinatorial problems
\& geometric problems
\& numerical problems
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 @2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Fundamental data structures

or list

- array
- linked list
- string

ภ stack
\& queue
\& priority queue

ภ graph

of tree
\& set and dictionary
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 1 ©2012

Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of algorithms

\& Issues:

- correctness
- time efficiency
- space efficiency
optimality

\& Approaches:

- theoretical analysis
- empirical analysis
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size

ภ Busic operation: the operation that contributes most towards the running time of the algorithm
input size
$I(n) \approx c_{o p} C(n)$
running time
execution time for basic operation

Number of times
basic operation is
executed

Input sive and basic operation examples

Problem	Input size measure	Busic opercution
Searching for key in a list of n items	Number of list's items, i.e. n	Key comparison
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers
Checking primality of a given integer n	n 'size = number of digits (in binary representation)	Division
Typical graph problem	\#vertices and/or edges	Visiting a vertex or traversing an edge

Empirical analysis of time efficiency

\& Select a specific (typical) sample of inputis
\& Use physical unit of time (e,gn, milliseconds)

or

Count actual number of basic operation's executions
\& Analyze the empirical data
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:
\& Worst case: $\mathrm{C}_{\text {worst }}(n)$ - maximum over imputs of size n
\& Best case:
$\mathrm{C}_{\text {best }}(n)-$ minimum over inputs of sive n
\& Average case: $\mathrm{C}_{\text {avg }}(n)$ - "average" over inputs of size n

- Number of times the basic operation will be executed on typical input
- NOT the average of worst and best case
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example: Sequential search

ALGORITHM SequentialSearch (A[0..n-1], K)
//Searches for a given value in a given array by sequential search $/ /$ Input: An array $A[0 . . n-1]$ and a search key K
//Output: The index of the first element of A that matches K
/I
or -1 if there are no matching elements
$i \leftarrow 0$
while $i<n$ and $A[i] \neq K$ do
$i \leftarrow i+1$
if $i<n$ return i
else return -1
\& Worst case
\& Best case
\& Average case
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Types of formulas for basic operation's count

\& Exact formula

$$
\operatorname{eog}_{,}, C(n)=n(n-1) / 2
$$

\& Formula indicating order of growth with specific multiplicative constant

$$
\operatorname{e.g}, C(n) \approx 0.5 n^{2}
$$

\& Formula indicating order of growth with unknown multiplicative constant

$$
\operatorname{e.g}, C(n) \approx c n^{2}
$$

Order of growth

\& Most important: Order of growth within a constant multiple as $n \rightarrow \infty$
\& Example:

- How much faster will algorithm run on computer that is twice as flast?
- How much longer does it take to solve problem of double input sive?
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Values of some important functions as $n \rightarrow \infty$

 ite| n | $\log _{2} n$ | n | $n \log _{2} n$ | n^{2} | n^{3} | 2^{n} | $n!$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 3.3 | 10^{1} | $3.3 \cdot 10^{1}$ | 10^{2} | 10^{3} | 10^{3} | $3.6 \cdot 10^{6}$ |
| 10^{2} | 6.6 | 10^{2} | $6.6 \cdot 10^{2}$ | 10^{4} | 10^{6} | $1.3 \cdot 10^{30}$ | $9.3 \cdot 10^{157}$ |
| 10^{3} | 10 | 10^{3} | $1.0 \cdot 10^{4}$ | 10^{6} | 10^{9} | | |
| 10^{4} | 13 | 10^{4} | $1.3 \cdot 10^{5}$ | 10^{8} | 10^{12} | | |
| 10^{5} | 17 | 10^{5} | $1.7 \cdot 10^{6}$ | 10^{10} | 10^{15} | | |
| 10^{6} | 20 | 10^{6} | $2.0 \cdot 10^{7}$ | 10^{12} | 10^{18} | | |

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes
\& $O(g(n))$: class of functions $f(n)$ that grow no faster than $g(n)$
$\Omega \Theta(g(n))$: class of functions $f(n)$ that grow at same rate as $g(n)$
$\Omega \Omega(g(n))$: class of functions $f(n)$ that grow at least as fast as $g(n)$

Big-oh

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

Big-omega

Fig. 2.2 Big-mega notation: $t(n) \in \Omega(g(n))$

Big-theta

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Establishing order of growth using the definition

Definition: $f(n)$ is in $O(g(n))$ if order of growth of $f(n) \leq$ order of growth of $g(n)$ (within constant multiple),
i.e., there exist positive constant c and non-negative integer n_{0} such that

$$
f(n) \leq c g(n) \text { for every } n \geq n_{0}
$$

Examples:

of $10 n$ is $O\left(n^{2}\right)$
of $5 n+20$ is $O(n)$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Some properties of asymptotic order of growth

$\Omega f(n) \in O(f(n))$
$\Omega f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$
\& If $f(n) \in \mathrm{O}(g(n))$ and $g(n) \in \mathrm{O}(h(n))$, then $f(n) \in \mathrm{O}(h(n))$
Note similarity with $\mathrm{a} \leq \mathrm{b}$
\& If $f_{1}(n) \in \mathbf{O}\left(g_{1}(n)\right)$ and $f_{2}(n) \in \mathbf{O}\left(g_{2}(n)\right)$, then

$$
f_{1}(n)+f_{2}(n) \in \operatorname{O}\left(\max \left\{g_{1}(n), g_{2}(n)\right\}\right)
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Establishing order of growth using limits

0 order of growth of $T(n)$ < order of growth of $g(n)$
$\lim T(n) / g(n)=\{c>0$ order of growth of $T(n)=$ order of growth of $g(n)$
$n \rightarrow \infty$
$\infty \quad$ order of growth of $I(n)>$ order of growth of $g(n)$

Examples:
-10n vs. n^{2}

- $n(n+1) / 2$

VS.
n^{2}
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

L'Hôpital's rule and Stirling's formula

L'Hôpital's rule: If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and the derivatives $f^{\prime \prime}, g^{\prime}$ exist, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Example: $\log n$ vs. n

Stirling's formula: $n!\approx(2 \pi n)^{1 / 2}(n / \mathrm{e})^{\mu}$
Example: 2^{n} vs, $n!$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Orders of growth of some important functions

\& All logarithmic functions $\log _{4} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base $a>1$ is

ภ All polynomials of the same degree k belong to the same class: $a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{0} \in \Theta\left(n^{k}\right)$
\& Exponential functions a^{μ} have different orders of growth for different u 's
Ω order $\log n<\operatorname{order} n^{\alpha}(\alpha>0)<$ order $a^{n}<$ order $n!<$ order n^{n}

Basic asymptotic efficiency classes

1	constant
$\log n$	logarithmic
n	linear
$n \log n$	n-log- n or linearithmic
n^{2}	quadratic
n^{3}	cubic
2^{n}	exponential
$n!$	factorial

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Time efficiency of nonrecursive algorithms

General Plan for Analysis

\& Decide on parameter n indicating input size
\& Identify algorithm's basic operation
\& Determine worst, quepure, and best cases for input of sive n
\& Set up a sum for the number of times the basic operation is executed
\& Simplify the sum using standard formulas and rules (see Appendix A)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Useful summation formulas and rules

$$
\Sigma_{l \leq i \leq u} 1=1+1+\cdots+1=u-l+1
$$

In particular, $\Sigma_{\mid \leq i \leq n} 1=n-1+1=n \in \Theta(n)$
$\Sigma_{1 \leq i \leq n} i=1+2+\cdots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\Sigma_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$

$$
\Sigma_{0 \leq i \leq n} a^{i}=1+a+\cdots+a^{n}=\left(a^{n+1}-1\right) /(a-1) \text { for any } a \neq 1
$$

$$
\text { In particular, } \Sigma_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\cdots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right)
$$

$\Sigma\left(a_{i} \pm b_{i}\right)=\Sigma a_{i} \pm \Sigma b_{i} \quad \Sigma c a_{i}=c \Sigma a_{i} \quad \Sigma_{1 \leq i \leq u} a_{i}=\Sigma_{1 \leq i \leq m} a_{i}+\Sigma_{m+1 \leq i \leq u} a_{i}$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array //Input: An array $A[0 . . n-1]$ of real numbers //Output: The value of the largest element in A maxval $\leftarrow A[0]$ for $i \leftarrow 1$ to $n-1$ do

$$
\begin{aligned}
& \text { if } A[i]>\text { maxval } \\
& \quad \text { maxval } \leftarrow A[i]
\end{aligned}
$$

return maxval
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example 2: Element uniqueness problem

ALGORITHM UniqueElements(A[0..n-1])

//Determines whether all the elements in a given array are distinct
//Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do

$$
\text { for } j \leftarrow i+1 \text { to } n-1 \text { do }
$$

if $A[i]=A[j]$ return false
return true
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example 3: Matrix multiplication

ALGORITHM MatrixMultiplication(A[0..n-1, $0 . . n-1], B[0 . . n-1,0 . . n-1])$
//Multiplies two n-by- n matrices by the definition-based algorithm
//Input: Two n-by- n matrices A and B
//Output: Matrix $C=A B$
for $i \leftarrow 0$ to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow 0.0$
for $k \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]$
return C
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1, $0 . . n])$
//Implements Gaussian elimination of an n-by- $(n+1)$ matrix A for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
for $k \leftarrow i$ to n do

$$
A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i]
$$

Find the efficiency class and a constant factor improvement.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example 5: Counting binary digits

ALGORITHM Binary(n)

//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation count $\leftarrow 1$ while $n>1$ do

$$
\begin{aligned}
& \text { count } \leftarrow \text { count }+1 \\
& n \leftarrow\lfloor n / 2\rfloor
\end{aligned}
$$

return count

It cannot be investigated the way the previous examples are.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Plan for Analysis of Recursive Algorithms

\& Decide on a parameter indicating an input's size.
\& Identify the algorithm's basic operation.
\& Check whether the number of times the basic op. is executed may vary on different inputs of the same size. (If it may, the worst, average, and best cases must be investigated separately.)
\& Set up a recurrence relation with an appropriate initial condition expressing the number of times the basic op. is executed.
\& Solve the recurrence (or, at the very least, establish its solution's order of growth) by backward substitutions or another method.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2

Example 1: Recursive evaluation of n !

Definition: $n!=1 \cdot 2 \cdot \ldots \cdot(n-1) \cdot n$ for $n \geq 1$ and $0!=1$

Recursive definition of $n!: F(n)=F(n-1) \cdot n$ for $n \geq 1$ and $F(0)=1$

ALGORITHM $F(n)$
 //Computes n ! recursively
 //Input: A nonnegative integer n
 //Output: The value of n !
 if $n=0$ return 1
 else return $F(n-1) * n$

Sive:

Basic operation:
Recurrence relation:
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Solving the recurrence for $\operatorname{MI}(n)$

$\mathrm{M}(n)=\mathrm{M}(n-1)+1, \mathrm{M}(0)=0$

Example 2: The Tower of Hanoi Puzale

Recurrence for number of moves:

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Solving recurrence for number of moves

$\mathrm{M}(n)=2 \mathrm{M}(n-1)+1, \mathrm{M}(1)=1$
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Tree of calls for the Tower of Hanoi Puzule

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example 3: Counting \#bits

ALGORITHM $\operatorname{BinRec}(n)$

//Input: A positive decimal integer n
//Output: The number of binary digits in n 's binary representation if $n=1$ return 1 else return $\operatorname{Bin} \operatorname{Rec}(\lfloor n / 2\rfloor)+1$

Fibonacci numbers

The Fibonacei numbers:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

The Fibonacei recurrence:

$F(n)=F(n-1)+F(n-2)$
$F(0)=0$
$F(1)=1$

General $2^{\text {nd }}$ order linear homogeneous recurrence with constant coefficientis:

$$
a \mathbf{X}(n)+b \mathbf{X}(n-1)+c \mathbf{X}(n-2)=0
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 O2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Solving $\quad a \mathbf{X}(n)+b \mathbf{X}(n-1)+c \mathbf{X}(n-2)=0$

\& Set up the characteristic equation (quadratic)

$$
a r^{2}+b r+c=0
$$

Ω Solve to obtain roots r_{1} and r_{2}
\& General solution to the recurrence
if r_{1} and r_{2} are two distinct real roots: $\mathbf{X}(n)=\alpha r_{1}^{n}+\beta r_{2}^{n}$
iff $r_{1}=r_{2}=r$ are two equal real roots: $\quad X(n)=\alpha r^{n}+\beta n r^{n}$
\& Particular solution can be found by using initial conditions
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Application to the Fibonacci numbers

$F(n)=F(n-1)+F(n-2)$ or $F(n)-F(n-1)-F(n-2)=0$

Characteristic equation:

Roots of the characteristic equation:

General solution to the recurrence:

Particular solution for $F(0)=0, F(1)=1$:
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Computing Fibonacci numbers

1. Definition-based recursive algorithm
2. Nonrecursive definition-based algorithm
3. Explicit formula algorithm
4. Logarithmic algorithm based on formula:

$$
\begin{aligned}
& F(n-1) \quad \\
& F^{\prime}(n)
\end{aligned} \quad \begin{aligned}
& F(n)(n+1)
\end{aligned}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}
$$

for $n \geq 1$, assuming an efficient way of computing matrix powers.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

