
T & TR 12:30 – 01:45 p.m. EB 0140 CS 447 Fall 2018

CS 447 : Networks and Data Communications
Programming Assignment #02

Total Points: 150

Assigned Date : Tuesday, October 23, 2018

Due Date : Tuesday, November 06, 2018 @ 12:29:59 p.m.

Overview

Your second programming assignment is to implement a basic Real Time Streaming Protocol (RTSP)
application. RTSP is typically used to stream multimedia (using an end-to-end transport protocol called
the Real-Time Transport Protocol (RTP) RFC #3550), and the corresponding RFC description – RFC
#7826 – is fairly lengthy. Given our 2 week window, you are not expected to implement a fully-pledged
RTSP multimedia application, but rather a simplified basic RTSP application using TCP and UDP. The
objectives of this assignment are:

• to become familiar with RTSP and understand real-time end-to-end data delivery;
• to familiarize yourself with Out-of-Band protocols; and
• to gain an appreciation of the advantages of UDP over TCP;

Note: RTSP employs two separate connections – one for control and one for data. This is the same
behavior you observe in FTP (which uses port 20 for data and port 21 for control). Such protocols are
called out-of-band protocols.

Backstory

In his latest bid to locate the long lost Unicorn, captain Haddock wants to send a deep sea probe
to the depths to gather data. The probe is going to stream back data from three different sensors:
oxygen-levels, temperature, and pressure. He wants to monitor these in real-time to better steer the
probe to find what he is looking for.

Technical Requirements

1. For this assignment, you will need to write a client-server application to support the real-time data
monitoring of the probe.

2. Your application will implement a simplified subset of the RTSP specifications (RFC 7826). Instead
of RTP, you will utilize TCP and UDP as specified below:

(a) A control connection over TCP.

last updated: 10/22/18 @ 3:08pm 1



T & TR 12:30 – 01:45 p.m. EB 0140 CS 447 Fall 2018

(b) A data connection over UDP.

3. Your application should relay 3 different types of data – {O T, and P} – from server→ client using
the data connection. The payload type numbers will be O:=79, T:=84, and P:=80.

4. The format of each data type is as follows and each packet should have only 1 reading

• 5-bits for 1 oxygen reading. Trivia: Dissolved Oxygen levels is a range 0 – 16 mg/L.
• 8-bit for 1 temperature reading. Trivia: Coldest recorded Temperature on earth is -128.6 oF.
• 11-bits for 1 pressure reading. Trivia: Highest sea-level pressure recorded is 1050 mbar.

5. You will have one server program and two client programs — a data-client (UDP) and a
control-client (TCP).

6. Your data-client receives the data and should display a horizontal histogram that scrolls ver-
tically as time goes on. Each line should be the value for one reading relative to the width of
the column width, which is 20. For example, if the value for the temperature reading is 255

(max value), then on the line corresponding to temperature, you should display/print 20 ?s (i.e.
? ? ? ? · · · ?). If it’s half the maximum value for that data, then it should print only 10 ?s. Take care
to put the right data into the right row. The order is oxygen, temperature, pressure.

7. There should be a separate control-client to issue the following commands, which should be
issued using a TCP connection.

• SETUP (sec. 13.3) — Informs the server the socket address used for data communication.
Here’s a sample SETUP message.

C → S: SETUP rtsp://<server-hostname>/ RTSP/2.0
CSeq: 302
Transport: UDP;unicast;dest_addr”:4588”
Sensor: *

In this example, the client informs the server that it is requesting data from all three sensors
(default behavior) accepting on UDP port 4588. The optional Sensor header can be used to
request particular sensor data (comma separated if more than one). A sample server response
would look similar to the following.

S → C: RTSP/2.0 200 OK
CSeq: 302
Date: Tue, 23 Oct 2018 12:29:29 -0500
Transport: UDP;unicast;dest_addr=”:4588”;

src_addr=”146.163.150.1:6256”

Here, the server identifies the server side socket ID for data transfer.

• PLAY (sec. 13.4) — Informs the server to start sending data (or resume sending in the case of
a PAUSE). The server keeps sending data at a steady rate of every 3 seconds. until instructed
otherwise. The received data is displayed on the data-client as a histogram. The default
behavior is the request for all three sensor data. This behavior can be modified using the
optional Sensor header.

C → S: PLAY rtsp://<server-hostname> RTSP/2.0
CSeq: 836
Sensor: *

last updated: 10/22/18 @ 3:08pm 2



T & TR 12:30 – 01:45 p.m. EB 0140 CS 447 Fall 2018

S → C: RTSP/2.0 200 OK
CSeq: 836
Date: Tue, 23 Oct 2018 12:31:45 -0500

Over the data connnection:

S → R: 79:11111;84:11111111;80:11111111111

• PAUSE (sec. 13.6) — Informs the server to stop sending data. Correspondingly, the data-client
will pause as it is no longer receiving data.

C → S: PAUSE rtsp://<server-hostname> RTSP/2.0
CSeq: 834

S → C: RTSP/2.0 200 OK
CSeq: 834
Date: Tue, 23 Oct 2018 12:48:23 -0500

• TEARDOWN (sec. 13.7) — Ends the streaming session for all programs involved. This is effec-
tively a QUIT command for both clients and both the data-client and the control-client
should exit gracefully. Your server should handle this without issue and be ready to receive
more SETUP commands.

C → S: TEARDOWN rtsp://<server-hostname> RTSP/2.0
CSeq: 892

S → C: RTSP/2.0 200 OK
CSeq: 892

• Read relevant sections on the RFC for more information on these commands.

8. Your server should send appropriate response codes to the control-client. Use sec. 17: Status
Code Definitions on RFC #7826 to guide your choices. Make sure to appropriately justify your
choices in your report.

9. Your data-client should take as a command line argument of the desired UDP port to receive
data that comes from the server.

e.g. ./receiver <receiver-port>

Note: Your data-client is effectively on a listen-and-display mode. It should not be used to send
any commands to the server.

10. Your control-client should take the hostname/ip address and the TCP port number which the
server is listening on for control commands, and a third argument to identify the UDP port for the
data connection (through your data-client).

e.g. ./controller <server-ip> <server-port> <receiver-port>

It is assumed that receiver and controller are running on the same machine, but the server

last updated: 10/22/18 @ 3:08pm 3



T & TR 12:30 – 01:45 p.m. EB 0140 CS 447 Fall 2018

will be running on a separate machine.
11. The server program should accept four command line arguments: port to use to listen to TCP

connections, oxygen data file, pressure data file, and temperature data file, all of which will be
binary files.

e.g. ./server <server-port> <oxygen.bin> <temp.bin> <pressure.bin>

This will start the server listening on <server-port> for control connections, and will use the
binary data from the *.bin files to stream data back to clients over data connections. Here’s an
architectural figure of the overall interaction.

Logistics

• IPs and ports should in no way be hard coded. They should be given as command line arguments
when launching the program
• Your server and receiver will need to be started first in the prescribed setup, and then your
controller after since it must connect to both of them.
• Include a wireshark screenshot (wireshark capture files, .pcap files, are also acceptable) showing

a sample interaction between your client(s) and server. Your screenshot should clearly depict the
expected RTSP message headers outlined in Technical requirements item #7 above.

Instructions

• This is an individual assignment. Do your own work.
• Start early!! Take backups of your code often!!. Use of a version control software is highly

recommended!
• Make sure to test your program properly before your final submission. It is highly recommended

to test build and run your submission on the home server, home.cs.siue.edu.
• You may use any programming language of your choice out of C, C++, Java, Python or Go as

these are all available on the home server. However, you must make sure that your code com-
piles and runs on a typical Linux machine. Absolutely DO NOT include executables with your
submissions.

last updated: 10/22/18 @ 3:08pm 4



T & TR 12:30 – 01:45 p.m. EB 0140 CS 447 Fall 2018

• A Makefile is mandatory. Whether or not your program needs to be compiled, have it echo
instructions to run the program.
• Follow a good coding standard. Use the Google C++ coding standard found here http://goo.gl/
1rC1o, if you don’t already follow one.
• The report part of your solution must be produced using a word processor. LATEX is highly recom-

mended but not a requirement.
• Your final report should be in PDF format. No exceptions.
• Any figures, graphs, plots, etc., should also be produced using appropriate computer applications.

If using LATEX, the pgfplots package is very useful for making all sorts of graphs.
• You are strongly encouraged to answer your own design and/or implementation questions based

on the the RFCs, rather than defaulting to the instructor immediately. Make sure to properly
document any such choices in your report and be as much descriptive as possible with proper
sectional citation(s) from the relevant RFCs (that way I will know why you did what you did).
• The due date of this assignment is Tuesday, November 06, 2018 @ 12:29:59 p.m. A dropbox will

be opened for submission on Moodle.

Deliverables

A complete solution comprises of:

• A short report of the design and implementation of your system. The report should be PDF format.
At minimum, your report should include the following sections:

– Introduction: Your objective and what you hope to gain from assignment.
– Overall design, specific design choices, and reply codes used.
– The output of a sample run (including screenshots where applicable). See Logistics require-

ment above.
– Summary and Issues encountered. What you were able to achieve from your own objectives

(from the introduction) as well as project specifications. Make sure to explicitly list function-
ality you failed to implement (or buggy).

• A compressed tarball that contains:

– a directory containing (only) your source code. Do not include executables, folders created
by your programs, or any other files not specifically listed here as required.

– A short readme file with compilation instructions.
– A makefile to automate compilation. A (except python).

To create a compressed tarball of the directory source, use the following command:
tar -zcvf siue-id-pr2.tar.gz source/. e.g. tar -zcvf tgamage-pr2.tar.gz PR02/

Collaborating on ideas or answering each others questions is always encouraged. Most times, I find that
you learn a lot from your peers. However, do not share/copy/duplicate code from others including
online sources. The exercise is meant for you to learn network programming, not to test your googling
abilities. Issues related to academic integrity and plagiarism have ZERO tolerance.

Extra Credit

• Enable multiple concurrent clients to independently interact with the server [25 points]

last updated: 10/22/18 @ 3:08pm 5

http://goo.gl/1rC1o
http://goo.gl/1rC1o


T & TR 12:30 – 01:45 p.m. EB 0140 CS 447 Fall 2018

• Improve user friendliness of your implementation using a text-based UI such as ncurses https:
//www.gnu.org/software/ncurses/ [20 points]
Note: If you take any of the extra credit options, you must explicitly list that in your documentation
including your report, and readme.

Useful Resources

• Linux Man pages – found in all linux distributions
• Beej’s Guide to Network Programming – A pretty thorough free online tutorial on basic network

programming http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
• Real Time Streaming Protocol

RFC #7826 https://tools.ietf.org/pdf/rfc7826.pdf

last updated: 10/22/18 @ 3:08pm 6

https://www.gnu.org/software/ncurses/
https://www.gnu.org/software/ncurses/
http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf
https://tools.ietf.org/pdf/rfc7826.pdf

