
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling difficult 

combinatorial problems (NP-hard problems):

 Use a strategy that guarantees solving the problem exactly 

but doesn’t guarantee to find a solution in polynomial time

 Use an approximation algorithm that can find an 

approximate (sub-optimal) solution in polynomial time



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Exact Solution Strategies

 exhaustive search (brute force)

• useful only for small instances

 dynamic programming

• applicable to some problems (e.g., the knapsack problem)

 backtracking

• eliminates some unnecessary cases from consideration

• yields solutions in reasonable time for many instances but 
worst case is still exponential

 branch-and-bound

• further refines the backtracking idea for optimization 
problems



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

Backtracking

 Construct the state-space tree

• nodes:  partial solutions

• edges: choices in extending partial solutions

 Explore the state space tree using depth-first search

 “Prune” nonpromising nodes

• stop exploring subtrees rooted at nodes that cannot lead 

to a solution and backtracks to such a node’s parent to 

continue the search



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

Example:  n-Queens Problem

Place n queens on an n-by-n chess board so that no two of them 

are in the same row, column, or diagonal

1 2 3 4

1

2

3

4

q u e e n  1

q u e e n  2

q u e e n  3

q u e e n  4



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

State-Space Tree of the 4-Queens Problem



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6

Example: Hamiltonian Circuit Problem

d

a b

e

c f

0

0

05

1 1 5

3

38

3

w it h  3

w it h  5

w it h  6

w / o  3

w / o  5

w / o  6 w it h  6 w / o  6

w / o  5 w it h  5

X X X X

X

1 4 + 7 > 1 5 3 + 7 < 1 5 1 1 + 7 > 1 4 5 + 7 < 1 5

0 + 1 3 < 1 5

w it h  6

X

9 + 7 > 1 5

1 4 98

8

w / o  7

w / o  6

X

8 < 1 5

s o lu t io n

w it h  7

1 5



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 7

Branch-and-Bound

 An enhancement of backtracking

 Applicable to optimization problems 

 For each node (partial solution) of a state-space tree, 
computes a bound on the value of the objective function for 
all descendants  of the node (extensions of the partial 
solution)

 Uses the bound for:

• ruling out certain nodes as “nonpromising” to prune the 
tree – if a node’s bound is not better than the best 
solution seen so far

• guiding the search through state-space



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8

Select one element in each row of the cost matrix C so that: 
• no two selected elements are in the same column
• the sum is minimized

Example

Job 1 Job 2 Job 3 Job 4

Person a 9 2 7 8

Person b 6 4 3 7

Person c 5 8 1 8

Person d 7 6 9 4

Lower bound: Any solution to this problem will have total cost

at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)

Example: Assignment Problem



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

Example: First two levels of the state-space tree

12.5

12.5



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Example (cont.)



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 11

Example: Complete state-space tree



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12

Example: Traveling Salesman Problem



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Approximation Approach

Apply a fast (i.e., a polynomial-time) approximation algorithm 
to get  a solution that is not necessarily optimal but hopefully 
close to it 

Accuracy measures: 

accuracy ratio of an approximate solution sa

r(sa) = f(sa) / f(s*)  for minimization problems

r(sa) = f(s*) / f(sa)  for maximization problems

where  f(sa) and  f(s*) are values of the objective function f  for  
the approximate solution sa and actual optimal solution s*

performance ratio of the algorithm A

the lowest upper bound of r(sa) on all instances



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Nearest-Neighbor Algorithm for TSP

Starting at some city, always go to the nearest unvisited city, 

and, after visiting all the cities, return to the starting one

A B

D C

Note: Nearest-neighbor tour may depend on the starting city

Accuracy:  RA = ∞ (unbounded above) – make the length of AD

arbitrarily large in the above example

1

6 2
3 3

1

sa :  A – B – C – D – A of length 10

s* :  A – B – D – C – A of length 8



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 15

Multifragment-Heuristic Algorithm

Stage 1: Sort the edges in nondecreasing order of weights. 

Initialize the set of tour edges to be constructed to 

empty set

Stage 2: Add next edge on the sorted list to the tour, skipping

those whose addition would’ve created a vertex of

degree 3 or a cycle of length less than n.   Repeat

this step until a tour of length n is obtained

Note:   RA = ∞, but this algorithm tends to produce better tours 

than the nearest-neighbor algorithm 



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

Twice-Around-the-Tree Algorithm

Stage 1: Construct a minimum spanning tree of the graph 

(e.g., by Prim’s or Kruskal’s algorithm)

Stage 2: Starting at an arbitrary vertex, create a path that goes

twice around the tree and returns to the same vertex

Stage 3: Create a tour from the circuit constructed in Stage 2 by

making shortcuts to avoid visiting intermediate vertices

more than once

Note:   RA = ∞ for general instances, but this algorithm tends to

produce better tours than the nearest-neighbor algorithm 



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

Example

a

db

e

4

1 2

7

8

9 9

c

6 1 0

8 1 1

a

db

e

c

Walk:  a – b – c – b – d – e – d – b – a           Tour:  a – b – c – d – e – a



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

Christofides Algorithm

Stage 1: Construct a minimum spanning tree of the graph 

Stage 2: Add edges of a minimum-weight matching of all the odd
vertices in the minimum spanning tree

Stage 3: Find an Eulerian circuit of the multigraph obtained in
Stage 2

Stage 3: Create a tour from the path constructed in Stage 2 by
making shortcuts to avoid visiting intermediate vertices
more than once

RA = ∞  for general instances, but it tends to produce better
tours than the twice-around-the-minimum-tree alg. 



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Example: Christofides Algorithm

a

db

e

4

1 2

7

8

9 9

c

6 1 0

8 1 1

a

db

e

4 7

8

c

6

1 14

a

db

e

7

c

6

1 14 9



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Euclidean Instances

Theorem If P ≠ NP, there exists no approximation algorithm
for TSP with a finite performance ratio.

Definition An instance of TSP is called Euclidean,  if its 
distances satisfy two conditions:

1.  symmetry d[i, j] = d[j, i]  for any pair of cities i and j
2.  triangle inequality d[i, j] ≤ d[i, k] + d[k, j]  for any cities i, j, k

For Euclidean instances:

approx. tour length / optimal tour length ≤ 0.5(⌈log2 n⌉ + 1)

for nearest neighbor and multifragment heuristic;

approx. tour length / optimal tour length ≤ 2     

for twice-around-the-tree;

approx. tour length / optimal tour length ≤ 1.5

for Christofides



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Local Search Heuristics for TSP

Start with some initial tour (e.g., nearest neighbor).  On each 
iteration, explore the current tour’s neighborhood by 
exchanging a few edges in it.  If the new tour is shorter, make it 
the current tour; otherwise consider another edge change.  If no 
change yields a shorter tour, the current tour is returned as the 
output.

Example of a 2-change

C
1

C
2

C
4

C
3

C
1

C
2

C
4

C
3



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Example of a 3-change

C
1

C
2

C
5

C
4

C
3

C
6

C
1

C
2

C
5

C
4

C
3

C
6

C
1

C
2

C
5

C
4

C
3

C
6



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Empirical Data for Euclidean Instances



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

Greedy Algorithm for Knapsack Problem

Step 1: Order the items in decreasing order of relative values:  
v1/w1 ⋯  vn/wn

Step 2: Select the items in this order skipping those that don’t 

fit into the knapsack

Example: The knapsack’s capacity is 16

item weight value           v/w

1 2 $40 20

2 5 $30 6

3 10 $50               5

4 5 $10               2

Accuracy

 RA is unbounded (e.g., n = 2,  C = m,  w1=1, v1=2, w2=m, v2=m)

 yields exact solutions for the continuous version



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 25

Approximation Scheme for Knapsack Problem

Step 1: Order the items in decreasing order of relative values:  
v1/w1  ⋯  vn/wn

Step 2: For a given integer parameter k, 0 ≤ k ≤ n, generate all
subsets of k items or less and for each of those that fit the
knapsack, add the remaining items in decreasing
order of their value to weight ratios

Step 3: Find the most valuable subset among the subsets 
generated in Step 2 and return it as the algorithm’s 
output

• Accuracy: f(s*) / f(sa) ≤ 1 + 1/k for any instance of size n

• Time efficiency:  O(knk+1)

• There are fully polynomial schemes: algorithms with 

polynomial running time as functions of both n and k



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Bin Packing Problem: First-Fit Algorithm

First-Fit (FF) Algorithm:  Consider the items in the order 

given and place each item in the first available bin with enough 

room for it; if there are no such bins, start a new one

Example:  n = 4,  s1 = 0.4,  s2 = 0.2,  s3 = 0.6,  s4 = 0.7

Accuracy

 Number of extra bins never exceeds optimal by more than

70% (i.e., RA ≤ 1.7) 

 Empirical average-case behavior is  much better.  (In one 

experiment with 128,000 bins, the relative error was found

to be no more than 2%.) 



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

Bin Packing: First-Fit Decreasing Algorithm

First-Fit Decreasing (FFD) Algorithm:  Sort the items in 

decreasing order (i.e., from the largest to the smallest).  Then 

proceed as above by placing an item in the first bin in which it 

fits and starting a new bin if there are no such bins

Example:  n = 4,  s1 = 0.4,  s2 = 0.2,  s3 = 0.6,  s4 = 0.7

Accuracy

 Number of extra bins never exceeds optimal by more than

50% (i.e., RA ≤ 1.5) 

 Empirical average-case behavior is much better, too



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 28

Numerical Algorithms

Numerical algorithms concern with solving mathematical 

problems such as

 evaluating functions (e.g., x, ex, ln x, sin x)

 solving nonlinear equations

 finding extrema of functions

 computing definite integrals

Most such problems are of “continuous” nature and can be 

solved only approximately



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 29

Principal Accuracy Metrics

 Absolute error of approximation (of * by  )

| - *|

 Relative error of approximation (of * by  )

| - *| / |*|

• undefined for * = 0

• often quoted in %



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 30

Two Types of Errors

 truncation errors

• Taylor’s polynomial approximation

ex  1 + x + x2/2! + ⋯ + xn/n!

absolute error  M |x|n+1/(n+1)!   where  M = max et   for    
0  t  x

• composite trapezoidal rule

 f(x)dx  (h/2) [f(a) + 21=i =n-1 f(xi) + f(b)],  h = (b - a)/n

absolute error  (b-a)h2 M2 / 12  where M2 = max |f(x)|  
for a x  b

 round-off errors

a

b



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 31

Solving Quadratic Equation

Quadratic equation ax2 + bx + c = 0 (a 0)

x1,2 = (-b  D)/2a where D = b2 - 4ac

Problems:

 computing square root

use Newton’s method: xn+1 = 0.5(xn + D/xn)

 subtractive cancellation

use alternative formulas (see p. 411)

use double precision for D = b2 - 4ac

 other problems (overflow, etc.)



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 32

Notes on Solving Nonlinear Equations

 There exist no formulas with arithmetic ops. and root 

extractions for roots of polynomials

anxn + an-1x
n-1 + ⋯ + a0 = 0  of degree n 5

 Although there exist special methods for approximating roots 

of polynomials, one can also use general methods for

f(x) = 0

 Nonlinear equation f(x) = 0 can have one, many, infinitely 

many, and no roots at all

 Useful:
• sketch graph of  f(x) 

• separate roots



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 33

Three Classic Methods

Three classic methods for solving nonlinear equation

f(x) = 0 

in one unknown:

 bisection method

 method of false position (regula falsi)

 Newton’s method



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 34

Bisection Method

Based on

 Theorem: If f(x) is continuous on ax b and f(a) and f(b) 

have opposite signs, then f(x) = 0 has a root on a < x < b

 binary search idea 

Approximations xn are middle points of shrinking segments

 |xn - x*|  (b - a)/2n

 xn always converges to root x* but slower compared to others 

a b

f (x )

x

x
1



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 35

Example of Bisection Method Application

Find the root of  

x³ - x - 1=0 

with the absolute error not larger than 0.01

f ( x )  =  x   -  x  - 1

x
20

y

3

..
n an bn xn f(xn)

1 0.0- 2.0+ 1.0 -1.0

2 1.0- 2.0+ 1.5 0.875

3 1.0- 1.5+ 1.25 -0.296875

4

5

6

7

8 1.3125- 1.328125+ 1.3203125 -0.018711

x ≈ 1.3203125



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 36

Method of False Position

Similar to bisection method but uses x-intercept of line through

(a, f(a)) and (b, f(b)) instead of middle point of [a,b]

Approximations xn are computed by the formula

xn = [anf(bn) - bnf(an)] / [f(bn) - f(an)]

 Normally xn converges faster than bisection method sequence 
but slower than Newton’s method sequence

x.

.

.

f ( x )

a
n

x
n

b
n

.



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 37

Newton’s Method 

Very fast method in which xn’s are x-intercepts of tangent lines 

to the graph of f(x)

Approximations xn are computed by the formula

xn+1 = xn - f(xn) / f(xn) 

x

.

.

f ( x  )

x
n

x
n+ 1

.

n



A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson 

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 38

Notes on Newton’s Method 

 Normally, approximations xn converge to root very fast but 

can diverge with a bad choice of initial approximation x0

 Yields a very fast method for computing square roots

xn+1 = 0.5(xn + D/xn)

 Can be generalized to much more general equations


