Tackling Difficult Combinatorial' Problems
r'rs

There are two principal approaches to tackling difficult
combinatorial problems (NP-hard problems):

Use a strategy. that guarantees solving the problem exactly
but doesn’t guarantee to find a solution in polynomial time

Use an approximation algorithm that can findan
approximate (sub-optimal) solutioniin polynomial time
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EXxact Solution Strategies
r'rs

exhaustive search (brute force) LA
usefulonly: for small instances

dynamic programming
applicable to some problems (e.q., the knapsack problem)

packtracking
eliminates Some Unnecessary cases frrom consideration

yields solutions in reasonable time for many/ instances but
Wworst case IS still'exponential

branch-and-bhound

further refines the backtracking idea for optimization

problems
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Backtracking '

Construct the state-space tree
nodes: partial solutions
edges: choices 1 extending partial selutions

Explore the state space tree using depth-first search

“Prune” nonpromising nodes

stop exploring subtrees rooted at nodes that cannot lead
to a solution and backtracks to such a node’s parent to
continue the search

i

i

i
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Example: n-Queens Proplem

Ir'rr

vy

Place n gueens on an n-by-n chess board so that no two ofithem
are in the same row, column, or diagonal
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State-Space Tiree ofithe 4-Queens Problem
Iy




Example: Hamiltonian Circuit Problem
'L

X wﬁf/ w/o 7 X X X
14+7>15 9+7>15 3+7<15 11+7>14 5+7<15

X
8<15

solution
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Branch-and-Bound
'

An enhancement ofibacktracking
Applicable to optimization problems

For eachi node (partial solution) ofia state-space tree,
computes a bound on the valtie of the objective function for
all'descendants of the node (extensions ofithe partial
solution)

Uses the bound for:

ruling out certain nodes as “nonpromising” to prune the
tree — if a node’s bound is not better than the best
solution Seen so far:

guiding the search through state-space
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Example: Assignment Problem el

Select one element in each row of the cost matrix C so that: =

e NO two selected elements are in the same column
e the sum IS minimized

Example
Job1l Job2 Job3 Job4
Persona 9 2 I 38
Person b

6 3 7
Person c 5 1 38
Persond 7 9 4

LLower: bound: Any solution to this problem willhave total cost
atleast: 2+3+1+4(ors+2+1+4)

iid
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Examples FIrst two levels of: the state-space tree

I

0
Start
fh = 2+3+1+4=10

e T

a—-1 a-—y3:2 a— 3 a— 4
b= +3+1+4=17 b= 243+1+4=10 b =7+4+5+4=20 ih = 8+3+1+6=18

Figure Levels 0 and 1 of the state-space tree for the instance of

the assignment problem being solved with the best-first branch-and-bound
algorithm. The number above a node shows the order in which the node
was generated. A node’s fields indicate the job number assigned to person
¢ and the lower bound value, b, for this node.
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Example (cont.)

a— 2

b =17 b =10 =20 b =18
b—1 b—3 b—4
b =13 b =14 b =17
Figure Levels 0, 1, and 2 of the state-space tree for the instance of the

assignment problem being solved with the best-first branch-and-bound algorithm

- m
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Example: Complete state-space tree

0
Start
b =10
1/2 \\4
a—»1 a—»?2 a—>3 a—4
b =17 b = 10 b = 20 b =18
X /_ \ X X
5 6 !
b—>1 b—3 b—4
b =13 b =14 b =17
/ \ X X
8 9
c— 3 c— 4
d— 4 d— 3
cost= 13 cost= 25
solution inferior solution
|
- Figure Complete state-space tree for the instance of the assignment

problem solved with the best-first branch-and-bound algorithm



a, d

4

1h =16

a, e

a,b a,c
h =14
X
His not before ¢
5 ) 7
a,b.c a,b,d a b, e
ih =186 b =186 b =19
X
b= of
node 11
8 9 10 11
a b, c d, a, b ¢ e, a,b,d ¢ a, b, d, e,
(e, a) (d, a) (e, a) (c,a)
JEE524 I =19 =24 A
first tour better tour inferior tour  optimal tour

X
fh==1 of

node 11

h =19

X
Ih=1 of
node 11




Approximation Approach
I

Apply a fast (i'e.; a polynomlal time) approximation algorlthm
toget a solutlon that 1S not necessarily optimal but hopefully.
close to It

ACCUracy measures:
accuracy. ratio ofian approximate solution s,
[(S,) = f(s,) /- f(S*) for minimization probklems
[(S,) = 1(s*) /- 1(S,) for maximization probklems
where f(s,) and f(s*) are values ofithe objective function fi for
the approximate solution s, and actual optimaliselution s*

performance ratio ofi the algorithm A
the lowest upper: bound of r(s,) on all instances

i

i

1id

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13



Nearest-Neighbor Algerithm for TSP T

Starting at some city, always go to the nearest unvisited city, S

and, after visiting all the cities, return to the starting one
1

A B
S, A—B-—C-D-Aoflength 10
6 . 2
s: A—B-D-C-Aof length 8
D C
1

Note: Nearest-neighbor tour may depend on the starting city,

Accuracy: R,= o (unbounded above) — make the length oifAD
arpitrarily large in the above example

i

i

i
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Multifragment=Heuristic Algorithm
r'rs

Stage 1: Sort the edges in nondecreasing order of weights. S
Initialize the set of:tour edges to be constructed to
empty set

Stage 2: Add next edge on the sorted list to the tour, skipping
those whose addition would’ve created a vertex of
degree S or a cycle oftlengthiless than n.  Repeat
this step until'a tour of length n'Is obtained

Note: R, = oo, but this algorithm tends to produce better tours
than the nearest-neighibor algorithm

i

i

i
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Twice-Around-the-Tiree Algorithm
r'rs

Stage 1: Construct a minimum spanning tree ofi the graph S
(e.g., by Prim’s or Kruskal’s algorithm)

Stage 2: Starting at an arbitrary Vertex, create a path that goes
twice around the tree and returns to the same Vertex

Stage 3: Create a tour from the circuit constructed in Stage 2 by,
making shortcuts to avoid visiting intermediate Vertices
more than once

Note: R, = oo for general instances, but this algorithm tends to
produce better tours than the nearest-neighbor algorithm

i

i

i
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Walk: a—-b-c-b-d-e—-d-b-a Tour: a—b-c—-d-e—-a
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Christofides Algorithm
r'rs

Stage 1: Construct a minimum spanning tree ofi the graph S

Stage 2: Add edges of:a mimimum-weight matching of all the odd
Vertices in the minimumi spanning tree

Stage 3: Find an Eulerian circuit of the multigraph obtained in
stage 2

Stage 3: Create a tour from the path constructed in Stage 2 by
making shortcuts to avoid visiting intermediate Vertices
more than once

R,=00 for general instances, but it tends to produce better
tours than the twice-around-the-minimum-tree alg.

i

i
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Example: Christofides Algorithm

I'rr
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Euclidean Instances
'y

Theorem [T P NP, there exists no approximation algorithrh -
for ISP with a finite performance ratio.

Definition An instance off ISP Is called Euclidean, I1fits
distances satishy two conditions:

1. symmetry dfi; j] = dj; 1] forany pair oficities i'and |

2. triangle inequality dii; j] = dfi; K] + d{k; j] forany cities i, |, K

For Euclidean Instances:

approx. tour length /optimal tour length < 0.5(Jlog, n] + 1)
for nearest neighbor and multifragment heuristic;

approx. tour length/ optimal tour length < 2
for twice-around-the-tree;

approx. tour length/ optimal‘tour length < 1.5

Sy fOr- Christofides

m A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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[Local Search Heuristics for TSP

I
Start with some initial tour: (e.g., nearest neighibor). On each
iteration, explore the current tour’s neighborhood by
exchanging a few edges in it. If:the new tour Is shorter, make It
the current tour; otherwise consider another edge change. Ifno

change yields a shorter tour, the current tour Is returned as the
outpuL.

Example ofia 2-change

i

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21



Example ofia s-change
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Empirical Data for Euclidean Instances

I'r!
TABLE 12.1 Average tour quality and running times for .
various heuristics on the 10,000-city random
uniform Euclidean instances [Joh02]

% excess over the  Running time
Heuristic Held-Karp bound (seconds)

nearest neighbor 24.79 0.28
multifragment 16.42 0.20
Christofides 9.81 1.04
2-opt 4.70 1.41
3-opt 2.88 1.50
Lin-Kernighan 2.00 2.06
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Greedy Algorithm for Knapsack Proble’rrh

. . ) ] ARAA
Step 1: Order the items in decreasing order of relative values:

Vol Wy = === 2 VAN,
Step 2: Select the items in this order skipping those that don’t
fit Into the knapsack

Example: The knapsack’s capacity is 16

item  weight  value /W
il 2 $40 20
2 3 $30 6
3 10 $50 5
4 3 $1.0 2

ACCcUracy

- | RplSUNbounded (e.g., n =2, C=m, w;=1,v,=2, W,=m, V,=m)

"= 1 yields exact solutions for: the continuous Version
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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Approximation Scheme for Knapsack Proplem
I
Step 1: Order the items in decreasing order of relative values:
Vo/Wy 2 == = VW

Step 2: For a given integer parameter k, 0 < k< n, generate all
sulsets of k items or less and for eachi of those that fit the
Knapsack, add the remaining rtems in decreasing
order: ofi therr value to weight ratios

Step 3: Find the most valuable subset among the Subsets

generated in Step 2 and return it as the algorithm’s
output

» Accuracy: f(s*) [1f(s)) = 1 + 1/k for any instance of size n

e Time efficiency: O(kn<1)

» [here are fully polynomial'schemes: algorithms with
<= polynomial running time as functions of: both n'and k

i
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Bin Packing Problem: kirst-Eit Algorithm

I

First-Fit (FF) Algorithm: Consider the items in the order

given and place each item in the first available binwithienough
room for It; I there are nossuch bins, start a new one

Example: n=4, s, =04, s, =0.2, s;= 0.6, s, = 0.7

ACcUracy.

Number: ofiextra bins never: exceeds optimal by more than
70% (1e:; Ry=1.7)

Empirical average-case behavior is; much better. (In one
experiment with' 128,000 bins, the relative error was found

to be no more than 2%.)
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Bin Packing: First-Fit Decreasing Algorithm’"

vy

Eirst-Eit Decreasing (FRED) Algorithm: Sort the items in
decreasing order (i.e., from the largest to the smallest). Tihen
Proceed as albove by placing an itemiin the first binmnwhich it
fits and starting a new binifithere are no such bins

Example: n=4, s, =04, s, =0.2, s;= 0.6, s, = 0.7

ACcuUracy.
NUumber: ofiextra bins never: exceeds optimal by more than
50% (1:e.;, Ra=<1.5)
Ty | EMIpIFICal aVerage-case DeENavIOor: IS muchi etter; too
<~ A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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Numerical Algorithms
r'rs

rVru
Numerical algorithms concern with solving mathematical
problems such as

evaluating functions (e.g., \x; €5, In x; sin x)
solving nonlinear equations

finding extrema ofi functions

computing definmite imtegrals

Most such problems are of “continuous” nature and can be
solved only approximately

111
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Principal Accuracy Metrics

Absolute error. of approximation (oficr by o)
o - o

Relative error of approximation (of o by o)
o - o /]
undefined for o = 0
often quoted in %

| ‘
- ‘
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Two Types ofi EFForS
/2 I

truncation errors
Taylor’s polynomial approximation

eXx 1+ X+ X421 + --- + xnl

absolute error < M [x[**Y/(n+1)!" where M= max et for
0<t<X

composite trapezoidal rule

b

[0 dx = (/2) [(@) + 2% cos £) = f(0)], = (b= &)/
a

absolute error < (b-a)hz M,/ 12 where M, = max [i7(x)
forasxs<h

_"= | round-offierrors
m =

|
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Solving Quadratic Equation
g@ g '

Quadratic equation ax® + bx + ¢ = 0 (a=0)
X1, = (b £ VD)/2a where D = b?- 4ac
Problems:

computing sguare root
use Newton’s method: X, = 0.5(%, + D/x,)

subtractive cancellation
use alternative formulas (see p. 411)
Lise double precision for D= b2 - 4ac

other: problems (overfiow, etc.)

111
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Notes on Solving Nonlinear Equations '

There exist no formulas with arithmetic ops. and root = = = ®

extractions for roots ofi polynomials

a X! +a X'+ -ee +a,=0 ofidegree n=5

Although there exist special‘methods for approximating roots
ofi polynomials, one can also use general methods for

f(x) =0

Nonlinear equation () = 0.can have one, many, infinitely
many, and no roots at all

Usetul:

sketch graph of: (%)

Sseparate roots
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Tthree Classic Methods

Three classic methods for solving nonlinear equation
f(x) =0
N one unknown:

pISection method
method ofi false position (regula falsr)

Newton’s method

| ‘
- ‘
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Bisection Method

Based on

Theorem: 1T () 1S continuous onasx= b and f(a) and f(b)
nave opposite signs, then f(x) = 0'has a rooton a< x< b

pINary search idea

I

Approximations X, are middle points of: shrinking Segments
X, - X | < (b - a)/2"

= : X alWays ConVErges to root x but slower compared to others
= i A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 12 ©2012 Pearson
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Example ofi Bisection Method Application

I
Find the root of
- X - 1=0
with the absolute error not larger than 0.01
N an D, X f(x,)
1| 0.0- 2.0+ 1.0 -1.0
2 | 10- 2.0+ 1.5 0.875
3| 10- 1.5+ 1.25" [ -0.296875
4 x = 1.3203125
5
6
o, L
<: 8 | 1.3125- | 13281254 | 13203125 | -O0187I1 |~
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Methoad ofi False Positi
ethoalofikalse Position T

rru
Similar: to bisection method but Uses x-intercept ofiline through

(&, f(a)) and (b, f(l)) instead of: middle point of:[a,0]

Approximations X, are computed by the formula
Xn = [a,1(0y) - bi(an)] / [1(b,) - ()]

Sy 1 Normally X, ConVerges faster than bISection metnodisequence

"= but slower than Newton’s method sequence
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Newton’s Method
. FIF

rVru
\/ery fast method inwhich X.’s are X-intercepts of: tangent lines

to the graph of (%)

ApPProximations X, are computed by the formula
X+l = Rn - 1:(Xn) / f,(xn)
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Notes on Newton’s Method
I

Normally; approximations X, Converge to root very fast but
can diverge with a bad choice ofiinitial approximation: X,

Yields a very fast method for computing sguare roots
Xneg = 0.9(%, + D/X)

Can be generalized to much more general equations

i

i

i
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