Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these solutions
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 5 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Divide-and-Conquer Technique (cont.)

a problem of size n

$$
\text { subproblem } 1
$$

of size $n / 2$
a solution to
subproblem 1
a solution to subproblem 2
a solution to the original problem
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 5 @2012 Pearson

Divide-and-Conquer Examples

ภ Sorting: mergesort and quicksort

』 Binary tree traversals

ภ Multiplication of large integers
\& Matrix multiplication: Strassen's algorithm
\& Closest-pair and convex-hull algorithms

Binary search: decrease-by-half (or degenerate divide\&rconq.)

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 5 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

General Divide-and-Conquer Recurrence

$T(n)=a I(n / b)+f(n)$ where $f(n) \in \Theta\left(n^{d}\right), \quad d \geq 0$

Master Theorem: If $a<b^{d}, \quad I(n) \in \Theta\left(n^{d}\right)$
If $a=b^{d}, \quad T(n) \in \Theta\left(n^{d} \log n\right)$
If $a>b^{d}, \quad T(n) \in \Theta\left(n^{\log _{b} b^{2}}\right)$

Note: The same results hold with 0 instead of Θ.

Examples: $T(n)=4 \Pi(n / 2)+n \Rightarrow T(n) \in$?

$$
\begin{aligned}
& T(n)=4 I(n / 2)+n^{2} \Rightarrow T(n) \in ? \\
& T(n)=4 I(n / 2)+n^{3} \Rightarrow T(n) \in ?
\end{aligned}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Mergesort

\& Split array $A[0 . n-1]$ in two about equal halves and make copies of each half in arrays B and C
\& Sort arrays B and C recursively
\& Merge sorted arrays B and C into array A as follows:

- Repeat the following until no elements remain in one of the arrays:
- compare the first elements in the remaining unprocessed portions of the arrays
- copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
- Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseudocode of Mergesort

ALGORITHM Mergesort(A[0..n-1])

//Sorts array $A[0 . . n-1]$ by recursive mergesort //Input: An array $A[0 . . n-1]$ of orderable elements //Output: Array $A[0 . . n-1]$ sorted in nondecreasing order if $n>1$

$$
\begin{aligned}
& \text { copy } A[0 . .\lfloor n / 2\rfloor-1] \text { to } B[0 . .\lfloor n / 2\rfloor-1] \\
& \text { copy } A[\lfloor n / 2\rfloor . . n-1] \text { to } C[0 . .\lceil n / 2\rceil-1] \\
& \operatorname{Mergesort}(B[0 . .\lfloor n / 2\rfloor-1]) \\
& \operatorname{Mergesort}(C[0 . .\lceil n / 2\rceil-1]) \\
& \operatorname{Merge}(B, C, A)
\end{aligned}
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 5 @2012 Pearson

Pseudocode of Merge

ALGORITHM $\operatorname{Merge}(B[0 . . p-1], C[0 . . q-1], A[0 . . p+q-1])$
//Merges two sorted arrays into one sorted array
//Input: Arrays $B[0 . . p-1]$ and $C[0 . . q-1]$ both sorted
//Output: Sorted array $A[0 . . p+q-1]$ of the elements of B and C $i \leftarrow 0 ; j \leftarrow 0 ; k \leftarrow 0$
while $i<p$ and $j<q$ do

$$
\begin{aligned}
& \text { if } B[i] \leq C[j] \\
& \qquad A[k] \leftarrow B[i] ; i \leftarrow i+1
\end{aligned}
$$

else $A[k] \leftarrow C[j] ; j \leftarrow j+1$
$k \leftarrow k+1$
if $i=p$
copy $C[j . . q-1]$ to $A[k . . p+q-1]$
else copy $B[i . . p-1]$ to $A[k . . p+q-1]$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 5 02012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of Mergesort

\& All cases have same efficiency: $\Theta(n \log n)$
\& Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting:

$$
\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n-1.44 n
$$

\& Space requirement: $\Theta(n)$ (not in-place)
\& Can be implemented without recursion (botiom-up)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 5 @2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Quicksort

\& Select a pivot (partitioning element) - here, the first element
\& Rearrange the list so that all the elements in the first s positions are smaller than or equal to the pivot and all the elements in the remaining n ns positions are larger than or equal to the pivot (see next slide for an algorithm)

$$
\mathrm{A}[i] \leq p
$$

$$
\mathrm{A}[i] \geq p
$$

\& Exchange the pivot with the last element in the first (i.e., \leq) subarray - the pivot is now in its final position
Ω Sort the two subarrays recursively
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Hoare's Partitioning Algorithm

Algorithm Partition(A[l..r])

//Partitions a subarray by using its first element as a pivot
//Input: A subarray $A[l . . r]$ of $A[0 . . n-1]$, defined by its left and right
// indices l and $r(l<r)$
//Output: A partition of $A[l . . r]$, with the split position returned as
// this function's value
$p \leftarrow A[l]$
$i \leftarrow l ; \quad j \leftarrow r+1$
repeat
repeat $i \leftarrow i+1$ until $A[i] \geq p$
repeat $j \leftarrow j-1$ until $A[j]$. p
$\operatorname{swap}(A[i], A[j])$
until $i \geq j$
swap $(A[i], A[j]) \quad / / u n d o$ last swap when $i \geq j$
swap $(A[l], A[j])$
return j

Quicksort Example

$\begin{array}{llllllll}5 & 3 & 1 & 9 & 8 & 2 & 4 & 7\end{array}$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of Quicksort

\& Best case: split in the middle - $\Theta(n \log n)$
\& Worst case: sorted array! - © (n²)
Ω Average case: random arrays - $\Theta(n \log n)$
\& Improvements:

- better pivot selection: median of three partitioning
- switch to insertion sort on small subfiles
- elimination of recursion

These combine to $20-25 \%$ improvement
\& Considered the method of choice for internal sorting of large files ($n \geq 10000$)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)
Algorithm Inorder(1)
if $T \neq \varnothing$

Inorder $\left(I_{l e f f}\right)$ print(root of T)

Efificiency: ©(n)
A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Binary Tree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree

$h(T)=\max \left\{h\left(T_{\mathrm{L}}\right), h\left(T_{\mathrm{R}}\right)\right\}+1$ if $T^{\prime} \neq \varnothing$ and $h(\varnothing)=-1$

Efiiciency: $\Theta(n)$

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:
$A=12345678901357986429 \quad B=87654321284820912836$
The grade-school algorithm:

$$
\begin{gathered}
a_{1} a_{2} \ldots a_{n} \\
b_{1} b_{2} \ldots b_{n} \\
\left(d_{10}\right) d_{11} a_{12} \ldots d_{1 n} \\
\left(d_{20}\right) d_{21} d_{22} \ldots \ldots d_{2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
\left(d_{n 0}\right) d_{n 1} d_{n 2} \ldots d_{n n}
\end{gathered}
$$

Efficiency: n^{2} one-digit multiplications

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

First Divide-and-Conquer Algorithm

A small example: $\mathrm{A} * \mathrm{~B}$ where $\mathrm{A}=2135$ and $\mathrm{B}=4014$
$\mathrm{A}=\left(21 \cdot 10^{2}+35\right), \quad \mathrm{B}=\left(40 \cdot 10^{2}+14\right)$
So, $\mathrm{A} * \mathrm{~B}=\left(21 \cdot 10^{2}+35\right) *\left(40 \cdot 10^{2}+14\right)$
$=21 * 40 \cdot 10^{4}+(21 * 14+35 * 40) \cdot 10^{2}+35 * 14$

In general, if $A=A_{1} A_{2}$ and $B=B_{1} B_{2}$ (where A and B are \boldsymbol{n}-digit, $A_{1}, A_{2}, B_{1}, B_{2}$ are $n / 2$-digit numbers),
$\mathrm{A} * \mathrm{~B}=\mathrm{A}_{1} * \mathrm{~B}_{1} \cdot 10^{n}+\left(\mathrm{A}_{1} * \mathrm{~B}_{2}+\mathrm{A}_{2} * \mathrm{~B}_{1}\right) \cdot 10^{n / 2}+\mathrm{A}_{2} * \mathrm{~B}_{2}$
Recurrence for the number of one-digit multiplications $\mathrm{M}(\boldsymbol{n})$:

$$
M(n)=4 M(n / 2), \quad M(1)=1
$$

Solution: $\mathrm{M}(n)=n^{2}$

Second Divide-and-Conquer Algorithm

$\mathrm{A} * \mathrm{~B}=\mathrm{A}_{1} * \mathrm{~B}_{1} \cdot 10^{u}+\left(\mathrm{A}_{1} * \mathrm{~B}_{2}+\mathrm{A}_{2} * \mathrm{~B}_{1}\right) \cdot 10^{w / 2}+\mathrm{A}_{2} * \mathrm{~B}_{2}$
The idea is to decrease the number of multiplications from 4 to 3:

$$
\left(A_{1}+A_{2}\right) *\left(B_{1}+B_{2}\right)=A_{1} * B_{1}+\left(A_{1} * B_{2}+A_{2} * B_{1}\right)+A_{2} * B_{2},
$$

I.e., $\left(A_{1} * B_{2}+A_{2} * B_{1}\right)=\left(A_{1}+A_{2}\right) *\left(B_{1}+B_{2}\right)-A_{1} * B_{1}-A_{2} * B_{2}$, which requires only 3 multiplications at the expense of ($4-1$) extra add/sub.

Recurrence for the number of multiplications $\mathrm{M}(x)$:

$$
M(n)=3 M(n / 2), \quad M(1)=1
$$

Solution: $\mathrm{M}(n)=3^{\log _{2} \mu}=n^{\log _{2} 3} \approx n^{1.585}$

$$
\text { A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. } 502012 \text { Pearson }
$$ Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Example of Large-Integer Multiplication

$2135 * 4014$

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can

 be computed as follows:$$
\begin{aligned}
\left(\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right) & =\left(\begin{array}{cc}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right) *\left(\begin{array}{ll}
B_{00} & B_{01} \\
B_{10} & B_{11}
\end{array}\right) \\
& =\left(\begin{array}{ll}
M_{1}+M_{4}-M_{5}+M_{7} & M_{3}+M_{5} \\
M_{2}+M_{4} & M_{1}+M_{3}-M_{2}+M_{6}
\end{array}\right.
\end{aligned}
$$

Formulas for Strassen's Algorithm

$$
\begin{aligned}
& M_{1}=\left(A_{00}+A_{11}\right) *\left(B_{00}+B_{11}\right) \\
& M_{2}=\left(A_{10}+A_{11}\right) * B_{00} \\
& M_{3}=A_{00} *\left(B_{01}-B_{11}\right) \\
& M_{4}=A_{11} *\left(B_{10}-B_{00}\right) \\
& M_{5}=\left(A_{00}+A_{01}\right) * B_{11} \\
& M_{6}=\left(A_{10}-A_{00}\right) *\left(B_{00}+B_{01}\right)
\end{aligned}
$$

$$
M_{7}=\left(A_{01}-A_{11}\right) *\left(B_{10}+B_{11}\right)
$$

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 5 02012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Analysis of Strassen's Algorithm

If n is not a power of 2 , matrices can be padded with zeros.

Number of multiplications:

$$
\mathrm{M}(n)=7 / \mathrm{M}(n / 2), \quad \mathrm{M}(1)=1
$$

Solution: $\mathrm{M}(n)=7^{\log _{2} n}=n^{\log _{2} 7} \approx n^{2.807}$ vs, n^{3} of brute-force alg.

Algorithms with better asymptotic efficiency are known but they are even more complex.

Closest-Pair Problem by Divide-and-Conquer

Step 1 Divide the points given into two subsets P_{l} and P_{r} by a vertical line $x=m$ so that half the points lie to the left or on the line and half the points lie to the right or on the line.

Closest Pair by Divide-and-Conquer (cont.)

Step 2 Find recursively the closest pairs for the left and right sulbsets.
Step 3 Set $d=\min \left\{d_{1}, d_{1}\right\}$
We can limit our attention to the points in the symmetric vertical strip S of width $2 d$ as possible closest pair. (The points are stored and processed in increasing order of their y coordinates.)
Step 4 Scan the points in the vertical strip S from the lowest up. For every point $p(x, y)$ in the strip, inspect points in in the strip that may be closer to p than d. There can be no more than 5 such points following p on the strip list!

Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

$$
\mathrm{T}(n)=2 T(n / 2)+\mathrm{M}(n), \text { where } \mathrm{M}(n) \in O(n)
$$

By the Master Theorem (with $a=2, b=2, d=1$)

$$
T(n) \in O(n \log n)
$$

Quickhull Algorithm

Convex hull: smallest convex set that includes given points
Ω Assume points are sorted by x-coordinate values
\& Identify extreme points P_{1} and P_{2} (lefitmost and rightmost)
\& Compute upper hull recursively:

- find point $P_{\text {max }}$ that is farthest away from line $P_{1} P_{2}$
- compute the upper hull of the points to the left of line $P_{1} P_{\max }$
- compute the upper hull of the points to the lefit of line $P_{\max } P_{2}$
\& Compute lower hull in a similar manner

A. Levitin "Introduction to the Design \& Analysis of Algorithms," 3rd ed., Ch. 502012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Efficiency of Quickhull Algorithm

\& Finding point farthest away from line $P_{1} P_{2}$ can be done in linear time
\& Time efficiency:

- worst case: $\Theta\left(n^{2}\right)$ (as quicksort)
- average case: $\Theta(n)$ (under reasonable assumptions about distribution of points given)
\& If points are not initially sorted by x-coordinate value, this can be accomplished in $O(n \log n)$ time
\& Several $O(n \log n)$ algorithms for convex hull are known

