Divide-and-Conguer:
r'rs

The most-well'known algorithm design strategy:

[Divide instance ofi problem: nto two: or: more
smaller instances

Solve smaller instances recursively

Obtain selution: to original (Iarger) imstance by
combining these solutions

111

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 1

Divide-and-Conguer Technique (cont.)

(11,

a problem of size n

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

111

i

i

i

Divide-and-Conqguer Examples
r'rs

SOrting: mergesort and guicksort
Binary tree traversals
Multiplication of large integers

Matrix multiplication: Strassen’s algorithm

Closest-pair and convex-hull algorithms

Binary search: decrease-by-half:(or degenerate divide&cond.)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

General Divide-and-Conguer RECURIENCE

rr

TR = TaT(n/e) () WRere iRy elend) "d =0 LR

Master: Theorem: Ifia<b? T(n) e G(n%
Ifa=hd T(n) e ®nh%logn)
Ifa>hd, T(n) e OMN'%b2)

Note: Tthe same results hold with © instead of: @.

Examples: 1(n) =41(n/2) + n = 1(n) e ?
T(n) =4T(n/2) + nf = T(n) e ?
T(n)=4T(n/2) + n° = T(n) e ?

i

i

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

i

i

1id

MErgesort

rr

L
Split array A[0..n-1] i two about egual halves and make

copies ofieach halfi in arrays B and C
Sort arrays B and C recursively.
Merge sorted arrays B and C into array A as follows:

Repeat the following until'no elements remain in one of
the arrays:

compare the first elements in the remaining
LINProcessed portions of the arrays

copy. the smaller ofithe two into A, while
Incrementing the mdex indicating the UNProcessed
portion ofithat array.

Once all'elements 1n one of the arrays are Processed,
copy. the remaining unprocessed elements frrom the other:
array into A.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseucdocode ofi IMergesort

ALGORITHM Mergesort(A[0..n —1])

/[Sorts array A[0..n — 1] by recursive mergesort

//Input: An array A|0O..n — 1] of orderable elements
/[/Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1

copy A[O..|n/2] — 1] to B[0..|n/2] — 1]

copy Al|n/2]|..n —1]to C[0..[n/2] — 1]
Mergesort(B|0..|n/2] — 1])
Mergesort(C[0..[n/2] — 1])
Merge(B, C, A)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Pseucocode of: Merge

I'rr

ALGORITHM Merge(B[0..p — 1], C[0..g — 1], A[O0..p +g — 1])

//Merges two sorted arrays into one sorted array

[Input: Arrays B[0..p — 1] and C[0..g — 1] both sorted

//Output: Sorted array A[0..p + g — 1] of the elements of B and C
1 <0, <0, k<0
while ;i < pand j < ¢ do

if B[i] < C[/]

Alk]< Bli]; i < i+1

else A[k]| < C[j], j«<j+1

k<—k+1
ifi =p

copy Clj..g — 1]to Alk..p + g — 1]
else copy B[i..p — 1]to Alk..p +q — 1]

-y
i A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

i

i

iid

Mergesort Example

LN

1234578 9

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

r'rr

Analysis of: Mergesort
r'rs

All'cases have same efficiency: O(n log n)

Number: oficomparisons in the Worst case Is close to
theoretical minimum for comparison-based sorting:

[log, nll = nlogyn - 1.44n
Space reguirement: O(n) (not in-place)

Can be iImplemented Without recursion (bottom-up)

111

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9

1

UICKSOrt
. 1"

Select a pivot (partitioning element) — here, the first element

Rearrange the list so that all'the elements in the first s
positions are smaller than or equal to the pivot and all the
elements in the remaining n-s positions are larger than or:
equal to the pivot (see next slide for an algorithm)

Alil=p Ali]zp
EXxchange the pivot with the last element in the first (1.e., =)

subarray — the pivot I1s now i its final position
SOrt the two subarrays Fecursively

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10

Hoare’s Partitioning Algorithm

I'rr

Algorithm Partition(A[l.r])

{ {Partitions a subarray by using is first element as a pivot
/ {Input: A subarray A[l..r] of A[0..n — 1], defined by its left and right

I indices !l and r (I < r)

{ {Output: A partition of A[l..r], with the split position returned as
I this function’s value

p + All]

il j+r+1

repeat

repeat i + i+ 1 until A[{] > p
repeat j + § — 1 until Afj] - »p
swap(Al], A[j])
until 7 > j
swap(A[i], A[§]) //undo last swap when 7 > §
swap(A[l], A[j])
return j

|

'y
iy A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

i

i

1id

Quicksort Example

o o 1 96 2 4 7

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rr

12

Analysis ofi Quicksort
VRIS T I

rra

Best case: split in the middlie — G(n log n)
\Worst case: sorted array! — ©(n?)
AVerage case: random arrays — ©(n log n)

Improvements:
petter pivot selection: median ofithree partitioning
switch torinsertion sort on small'stbfiles
elimination off FECUrSION

['hese combine to 20-25% improvement

Considered the method of choice for internal’sorting ofilarge

"= files (n=10000)
- ‘
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13

Binary Tiree Algorithms
r'rs

Binary tree Is a divide-and-conguer ready structure! e
EXx. 1: Classic traversals (preorder, inorder, postorder)
Algorithm Inorder(T)

I = D a a
Inorder(Ti.r) o C b C
print(root of) d e e « (e
Inorder (i) EREREEE

- Efficiency: ©(n)

|

11

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 14

Binary Tiree Algorithms (cont.)

EX. 2: Computing the height ofia binary. tree
o

h(T) = max{h(T,), (T} + 1 if T =P and h(D) = -1

Efficiency: ©(n)

i

i

iid

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

r'rr

(&

Multiplicati flC Int
ultiplication ofi ILarge Integers T

Consider: the problem of multiplying two (large) n-cigit inte'gérs‘
represented by arrays of: their digits such as:

A= 12345676901857966429 B = 67654321264520912656

1he grade-school algorithm:
ay & .ee A
b, b,... b,
(d10) d11d12 d1n
(dZO) d21(:122 dZn

(dno) dn1dn2 dnn
<= Efficiency: nzone-digit multiplications

-
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 16

i

i

First Divide-and-Conguer Algorithm '

A small example: A * Biwhere A = 2135 and B = 4014 S
A= (21-102 + 35), B= (40 -102 + 14)
So, A % B = (21 -102 + 35) * (40 -102 + 14)

= 21 % 40 -10% + (21 * 14 + 35 * 40) -102 + 35 * 14

In general; IFA=A A, and B = BB, (Where A and B are n-digit;
A A, By, B are ni2-digit nNUMIBErs);
AxB=A*B- 10" + (A * B, + A, % B)) -10M + A, * B

Recurrence for the number: ofione-cigit multiplications M(n):

M(n) = 4M(n/2), M(1) =1
Solution: M(n) = n?

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 17

Second Divide-and-Conguer Algorithm’"

rra

AxB=A;*B;-10" + (A;* B, + A, * B) -10M + A, * B,

The 1dea IS to decrease the number of: multiplications frrom 4 to s:

(Ag A0) (By + By)= Ay By 5+ (Ag# By A % By) £ A+ B

Iies; (Ag 6 By A0 By) = (A £ A)i (By B) A * By A+ B
which requires only 3 multiplications at the expense ofi (4-1) extra
add/sub.

Recurrence for the number ofimultiplications Mi(n):
Mi(n) = 3M(n/2), M(1) =1
‘=Solution: M(n) = 309 :2N = 10923 = {1585

-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 18

i

i

1id

Example of [Large-Integer I\/Iultiplicatio’n"

2135 * 4014

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 19

Strassen’s Matrix Multiplication

rr

rVru
Strassen observed [1969] that the product of two matrices can
e computed as follows:

COO COl AOO AOl BOO BOl
—_ x
ClO Cll AlO All BlO Bll

| ‘
- ‘
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 20

Formulas for Strassen’s Algorithm

rr

My = (Agy + A * (Bgp + Bry) v a
M, = (A +A) * By

M3 = Ay * (Bgy - Byy)

My = A # (B - Boo)

M: = (A + Ay * By

Mg = (A = Ago) * (Byo + Boy)

- — -
= Mo = (A -Ay) * (B + By
| ‘
-y A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
r Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 21

Analysis of Strassen’s Algorithm

rr

rra
Ifin'1S not a poewer: ofi 2, matrices can be padded With zeros.

Number of: multiplications:
M(n) = 7M(n/2), M(@) =1
Solution: M(n) = 7'°92n = o827~ 02807 /s, s of brrute-force alg.

Algorithms with better asymptotic efficiency, are known but they
are even more complex:

111

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 22

Closest-Pair Problem by Divide-and-Conguer:

rrr

rra

Step 1 Divide the points given into two subsets Py and P, by a
vertical line x = m so that halfithe points lie to the Ieft or on
the line and halfithe points lie to the right or on the line.

i

i

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 23

Closest Pair by Divide-and-Conguer: (cont.) 1Y,

Step 2 Find recursively the closest pairs for the left and'right” = ™
sulsets.

Step's Setd = min{a;, d.;
\We can limit our attention to the points in the symmetric
vertical'strip S ofiwidth 2d'as possible closest pair. (‘Tihe

POINTS are stored and processed in Increasing order: of
therr y coordinates.)

Step 4 Scan the points in the vertical strip S firom: the lowest up.
oK every point p(x,y) in the strip, Ispect points in
In the strip that may be closer: to p than d. Tinere can be
no more than 5such pornts following p on the strip list!

111

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 24

i

i

i

Efficiency ofithe Closest-Pairr Algorithm

Running time of the algorithm is described by
1(n) = 21(n/2) = M(n), where M(n) € O(n)

By the Master Theorem (Witha=2,b=2,d = 1)
1i(n) € O(n log n)

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson
Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

rr

rra

25

uickhullFAlgorithm
< : '

- . . rea
Convex hull: smallest convex set that includes given points
ASSUME points are sorted by x-coordinate values
Identify extreme points Py and P (leftmost and rightmost)

Compute upper hull recursively:
find point P, that'is farthest away from line P;P;
compute the upper: hull'of the points to the left ofiline P4 P
compute the upper: hull'of the points to the left ofiline P

Compute lower hullimia similar manner:
P

max s

- P,

@ S

maX

P

maX

()

P, - .

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

| ‘
| ‘
[

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 26

Efficiency of Quicknull’Algorithm '

Einding point farthest away from line P, P5 can be done in

[Inear time
Time efficiency:
worst case: O(n?) (as quicksort)

average case: O(n) (Under reasonable assumptions about
distribution of: points given)

IT:points are not mitially sorted by x-coordinate value, this
can be accomplishediin O(nlog n) time

Several' O(n log n)algorithms for: convex hullrare known

111

i

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 5 ©2012 Pearson

Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 27

