CS 456 : **Advanced Algorithms** Problem Solving Session #00

Assigned Date : Tuesday, August 21, 2017

Due Date : Tuesday, September 05, 2017 @ 09:29:59 a.m.

A hard copy submission at the beginning of class.

Take Home

Q1. [25 points] Plot the functions lg(n) and $n^{0.49}$ on a <u>linear graph</u> for $1 \le n \le 25$, and comment on the relative growth of the two functions.

Q2. [25 points] Plot the functions $log(n^2)$ and log^2n on a <u>semi-log graph</u> for $1 \le n \le 10,000$, and comment on the relative grown of the two functions.

- Q3. [10 points] Assume a computer that can perform 10^{10} operations per second. Find the largest input size n such that the result can be computed on this machine within an hour using each of the following five algorithms.
 - $T_1(n) = n^2$
 - $T_2(n) = \sqrt{n}$
 - $T_3(n) = nlgn$
 - $T_4(n) = 2^n$
 - $T_5(n) = 2^{2^n}$
- Q4. [15 points] Prove $\sum_{t=1}^{n} \frac{1}{t^2} \leq 2 \frac{1}{n}$ using weak induction.
- Q5. [15 points] Prove $\sqrt{2}$ is irrational using proof by contradiction. (hint: Assume $\sqrt{2} = \frac{m}{n}$, where $gcd(m, n) = 1; m, n \in \mathbb{Z}$)
- Q6. [15 points] Prove $2^x \ge x^2$ for $x \ge 4$ using induction.
- Q7. **[10 points]** Let f(n), g(n), and h(n) are asymptotically positive functions. Prove if $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$. (hint: Use the formal definition of Θ)
- Q8. [10 points] Let f(n) and g(n) are asymptotically positive functions. Prove $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$.
- Q9. **[15 points]** Using direct proof, prove that for any two integers $a, b \in \mathbb{Z}$, if both a, and b are **odd**, them the product ab is also odd. (*hint: A odd number* y = 2x + 1; $\exists x \in \mathbb{Z}$).

Q10. [20 points] Prove the following properties of asymptotic growth. (hint: Use the formal definitions)

- [5 points] If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$.
- [5 points] If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$, then $f(n) \in \Omega(h(n))$.
- [5 points] If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$, then $f(n) \in \Theta(h(n))$.
- [5 points] If $f(n) \in O(h(n))$ and $g(n) \in O(h(n))$, then $f(n) + g(n) \in O(h(n))$.