CS 456 : Advanced Algorithms
 Problem Solving Session \#oo

Assigned Date	: Tuesday, August 23,2016
Due Date	: Tuesday, August 06, 2016 @ 09:29:59 a.m.
	A hard copy submission at the beginning of class.

Take Home

Q1. [25 points] Plot the functions $\lg (n)$ and $n^{0.49}$ on a linear graph for $1 \leq n \leq 25$, and comment on the relative growth of the two functions.

Q2. [25 points] Plot the functions $\log \left(n^{2}\right)$ and $\log ^{2} n$ on a semi-log graph for $1 \leq n \leq 10,000$, and comment on the relative grown of the two functions.

Q3. [10 points] Assume a computer that can perform 10^{10} operations per second. Find the largest input size n such that the result can be computed on this machine within an hour using each of the following five algorithms.

- $T_{1}(n)=n^{2}$
- $T_{2}(n)=\sqrt{n}$
- $T_{3}(n)=n l g n$
- $T_{4}(n)=2^{n}$
- $T_{5}(n)=2^{2^{n}}$

Q4. [15 points] Prove $\sum_{t=1}^{n} \frac{1}{t^{2}} \leq 2-\frac{1}{n}$ using weak induction.

Q5. [15 points] Prove $\sqrt{2}$ is irrational using proof by contradiction.
(hint: Assume $\sqrt{2}=\frac{m}{n}$, where $\left.\operatorname{gcd}(m, n)=1 ; m, n \in \mathbb{Z}\right)$

Q6. [15 points] Prove $2^{x} \geq x^{2}$ for $x \geq 4$ using induction.

Q7. [10 points] Let $f(n), g(n)$, and $h(n)$ are asymptotically positive functions. Prove if $f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$ then $f(n=\Theta(h(n)))$. (hint: Use the formal definition of Θ)

Q8. [10 points] Let $f(n)$ and $g(n)$ are asymptotically positive functions. Prove $f(n)=\Theta(g(n))$ iff $g(n)=$ $\Theta(f(n))$.

Q9. [15 points] Using direct proof, prove that for any two integers $a, b \in \mathbb{Z}$, if both a, and b are odd, them the product $a b$ is also odd. (hint: A odd number $y=2 x+1 ; \exists x \in \mathbb{Z}$).

Q10. [20 points] Prove the following properties of asymptotic growth. (hint: Use the formal definitions)

- [5 points] If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$.
- [5 points] If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$, then $f(n) \in \Omega(h(n))$.
- [5 points] If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$, then $f(n) \in \Theta(h(n))$.
- [5 points] If $f(n) \in O(h(n))$ and $g(n) \in O(h(n))$, then $f(n)+g(n) \in O(h(n))$.

