CS 454: Theory of Computation Problem Solving Session #01

Questions

Design the following DFAs

- Q1. Alphabet $\Sigma = \{0, 1\}$. Accepts strings with odd number of 1's.
- Q2. Alphabet $\Sigma = \{a, b, c\}$. Accepts strings that include *aab* as a substring.
- Q3. Alphabet $\Sigma = \{a, b\}$. Accepts any strings that include *aababba* as a substring.
- Q4. Alphabet Σ {*a*, *b*, /, *}. Accepts strings inside C-style comments. e.g. accepts / * *abab* * / but rejects *ab* * /.
- Q5. * Alphabet $\Sigma = \{a, b, /, *\}$. Accepts strings that are not inside C-style comments.
- Q6. Alphabet $\Sigma = \{0, 1\}$. Accepts any strings with two consecutive zeros.
- Q7. Alphabet $\Sigma = \{0, 1\}$. Accepts all strings that start with 00.
- Q8. Alphabet $\Sigma = \{a, b\}$. Accepts all strings where *a*s and *b*s alternate.
- Q9. Alphabet $\Sigma = \{a, b\}$. Accepts all strings that start and end with the same symbol, i.e., $L = \{w | w \in \Sigma^*, w = a\{a, b\}^* a \cup b\{a, b\}^* b\}.$
- Q10. Alphabet $\Sigma = \{a, b\}$. Accepts strings that have at least one *a* and exactly 2 *b*s.
- Q11. Alphabet $\Sigma = \{a, b\}$. Accepts the language $L = \{w | | w | mod3 = 0\}$.
- Q12. Alphabet $\Sigma = \{a, b\}$. Show that the language $L = \{vwv | v, w \in \Sigma^*, |v| = 2\}$.