CS 456: Advanced Algorithms Notes #01

Disclaimer: The following is an outlined list of topics covered during Aug. 19 – Sep. 04 lectures. This list is not a substitute for missing classes or not taking your own (much more comprehensive) notes based on in-class discussions, but rather a quick reference guide based on the instructor's own notes and recollection. The list also does not reflect the order in which the topics were discussed in the classes. *The objective* of this list is to help you refresh your memory and fill any gaps in your own notes.

Topics Covered

- 08/19/2014
 - Defining Algorithms
 - Why learn algorithms
 - What does it mean for an algorithm to be efficient
 - The three important questions to ask about algorithms correctness, running time, order of growth
 - * e.g. Fibonacci Numbers
- 08/21/2014
 - Difference between a problem and a problem instance
 - What does it mean for an algorithm to be correct
 - Proving correctness using invariants
 - * Defining Invariants
 - * Initialization
 - * Maintenance
 - * Termination
 - Partial correctness vs. total correctness
 - How preconditions and postconditions relate to correctness proofs
 - Developing Invariants e.g. Insertion Sort
- 08/28/2014
 - Analyzing Algorithms (Runtime analysis)
 - e.g. Insertion sort
 - Best case vs worse case analysis
 - Order of growth
 - * Big O (oh) notation
 - Big Omega notation
 - Big Theta notation
 - How to use limit rule to compare order of growth
- 09/02/2014
 - Introduction to greedy strategy

- Representative problems minimum spanning trees, Prim's algorithm, Kruskal's algorithm
- Activity scheduling problem
- Greedy strategies for the activity scheduling problem
- 09/04/2014
 - Activity scheduling problem (contd....)
 - * Proving correctness using mathematical induction
 - * Runtime analysis

Questions? Comments? - Contact the instructor at his email address.