

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

Copyright © 2013 Kevin Wayne
http: / / www.cs.princeton.edu / ~wayne/kleinberg-tardos

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Section 8.1

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
partitioning problems
- graph coloring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. $O\left(n^{k}\right)$ algorithm unlikely.
- PSPACE-completeness. $O\left(n^{k}\right)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

von Neumann (1953)

Gödel
(1956)

Cobham (1964)

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

yes	probably no
shortest path	longest path
min cut	max cut
2-satisfiability	3-satisfiability
planar 4-colorability	planar 3-colorability
bipartite vertex cover	vertex cover
matching	3d-matching
primality testing	factoring
linear programming	

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?
using forced capture rule

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
computational model supplemented by special piece of hardware that solves instances of Y in a single step

Algorithm for X

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{P} Y$.

Note. We pay for time to write down instances sent to oracle \Rightarrow instances of Y must be of polynomial size.

Caveat. Don't mistake $X \leq_{P} Y$ with $Y \leq{ }_{P} X$.

Polynomial-time reductions

Design algorithms. If $X \leq_{P} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_{P} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_{P} Y$ and $Y \leq_{P} X$, we use notation $X \equiv_{P} Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

Section 8.1

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
, graph coloring
- numerical problems

Independent set

Independent-Set. Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S ?

Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

Vertex cover

Vertex-Cover. Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

independent set of size 6
vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. Vertex-Cover \equiv_{p} Independent-Set.
Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.

independent set of size 6 vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. Vertex-Cover \equiv_{p} Independent-Set.
Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
\Rightarrow

- Let S be any independent set of size k.
- $V-S$ is of size $n-k$.
- Consider an arbitrary edge (u, v).
- S independent \Rightarrow either $u \notin S$ or $v \notin S$ (or both)
\Rightarrow either $u \in V-S$ or $v \in V-S$ (or both).
- Thus, $V-S$ covers (u, v).

Vertex cover and independent set reduce to one another

Theorem. Vertex-Cover \equiv_{p} Independent-Set.
Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
\Leftarrow

- Let $V-S$ be any vertex cover of size $n-k$.
- S is of size k.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since $V-S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge $\Rightarrow S$ independent set. -

Set cover

Set-Cover. Given a set U of elements, a collection $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U ?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The $i^{\text {th }}$ piece of software provides the set $S_{i} \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{1}=\{3,7\} & S_{4}=\{2,4\} \\
S_{2}=\{3,4,5,6\} & S_{5}=\{5\} \\
\begin{array}{ll}
S_{3}=\{1\} & S_{6}=\{1,2,6,7\} \\
k=2 &
\end{array}
\end{array}
$$

Vertex cover reduces to set cover

Theorem. Vertex-Cover $\leq{ }_{P}$ Set-Cover.
Pf. Given a Vertex-Cover instance $G=(V, E)$, we construct a Set-Cover instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $U=E$.
- Include one set for each node $v \in V: S_{v}=\{e \in E: e$ incident to $v\}$.

vertex cover instance

$$
(k=2)
$$

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\}
\end{array}
$$

$$
(k=2)
$$

Vertex cover reduces to set cover

Lemma. $G=(V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

- Then $Y=\left\{S_{v}: v \in X\right\}$ is a set cover of size k. -

vertex cover instance

$$
(k=2)
$$

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
\hline
\end{array}
$$

set cover instance
($k=2$)

Vertex cover reduces to set cover

Lemma. $G=(V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S).

- Then $X=\left\{v: S_{v} \in Y\right\}$ is a vertex cover of size k in G. -

vertex cover instance

$$
(k=2)
$$

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
\hline
\end{array}
$$

set cover instance
($k=2$)

Section 8.2

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Satisfiability

Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

$$
x_{i} \text { or } \overline{x_{i}}
$$

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

Conjunctive normal form. A propositional $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$ formula Φ that is the conjunction of clauses.

SAT. Given CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{l}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

$$
\text { yes instance: } x_{1}=\text { true, } x_{2}=\text { true, } x_{3}=\text { false, } x_{4}=\text { false }
$$

Key application. Electronic design automation (EDA).

3-satisfiability reduces to independent set

Theorem. 3-SAT \leq_{P} INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

G

$k=3$

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

3-satisfiability reduces to independent set

Lemma. G contains independent set of size $k=|\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one node in each triangle.
- Set these literals to true (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.
$\operatorname{Pf} \Leftarrow$ Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. -

G

$k=3$

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{ll}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

Review

Basic reduction strategies.

- Simple equivalence: Independent-Set \equiv_{P} Vertex-Cover.
- Special case to general case: Vertex-Cover \leq_{P} Set-Cover.
- Encoding with gadgets: $3-$ SAT \leq_{P} INDEPENDENT-SET.

Transitivity. If $X \leq_{P} Y$ and $Y \leq_{P} Z$, then $X \leq_{P} Z$. Pf idea. Compose the two algorithms.

Ex. 3-Sat \leq_{p} Independent-Set \leq_{p} Vertex-Cover \leq_{P} Set-Cover.

Search problems

Decision problem. Does there exist a vertex cover of size $\leq k$?
Search problem. Find a vertex cover of size $\leq k$.

Ex. To find a vertex cover of size $\leq k$:

- Determine if there exists a vertex cover of size $\leq k$.
- Find a vertex v such that $G-\{v\}$ has a vertex cover of size $\leq k-1$. (any vertex in any vertex cover of size $\leq k$ will have this property)
- Include v in the vertex cover.
- Recursively find a vertex cover of size $\leq k-1$ in $G-\{v\}$.
delete v and all incident edges

Bottom line. Vertex-Cover $\equiv{ }_{P}$ Find-Vertex-Cover.

Optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?
Search problem. Find a vertex cover of size $\leq k$.
Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:

- (Binary) search for size k^{*} of min vertex cover.
- Solve corresponding search problem.

Bottom line. Vertex-Cover $\equiv{ }_{P}$ Find-Vertex-Cover $\equiv{ }_{P}$ Optimal-Vertex-Cover.

Section 8.5

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Hamilton cycle

Ham-Cycle. Given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V ?

Hamilton cycle

HAM-Cycle. Given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V ?

no

Directed hamilton cycle reduces to hamilton cycle

Dir-Ham-CyCle: Given a digraph $G=(V, E)$, does there exist a simple directed cycle Γ that contains every node in V ?

Theorem. Dir-Ham-CyCLE $\leq{ }_{P}$ HAM-CyCLE.

Pf. Given a digraph $G=(V, E)$, construct a graph G^{\prime} with $3 n$ nodes.

G

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G^{\prime} has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G^{\prime} has an undirected Hamilton cycle (same order).

Pf. \Leftarrow

- Suppose G^{\prime} has an undirected Hamilton cycle Γ^{\prime}.
- Γ^{\prime} must visit nodes in G^{\prime} using one of following two orders:
$\ldots, B, G, R, B, G, R, B, G, R, B, \ldots$
$\ldots, B, R, G, B, R, G, B, R, G, B, \ldots$
- Blue nodes in Γ^{\prime} make up directed Hamilton cycle Γ in G, or reverse of one.

3-satisfiability reduces to directed hamilton cycle

Theorem. 3 -SAT \leq_{P} DIR-HAM-CyCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of Dir-Ham-Cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^{n} Hamilton cycles which correspond in a natural way to 2^{n} possible truth assignments.

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_{i} and k clauses.

- Construct G to have 2^{n} Hamilton cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_{i}=$ true .

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_{i} and k clauses.

- For each clause, add a node and 6 edges.

3-satisfiability reduces to directed hamilton cycle

Lemma. $\quad \Phi$ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^{*}.
- Then, define Hamilton cycle in G as follows:
- if $x^{*}{ }_{i}=$ true, traverse row i from left to right
- if $x^{*}{ }_{i}=$ false, traverse row i from right to left
- for each clause C_{j}, there will be at least one row i in which we are going in "correct" direction to splice clause node C_{j} into cycle (and we splice in C_{j} exactly once)

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Leftarrow

- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_{j}, it must depart on mate edge.
- nodes immediately before and after C_{j} are connected by an edge $e \in E$
- removing C_{j} from cycle, and replacing it with edge e yields Hamilton cycle on $G-\left\{C_{j}\right\}$
- Continuing in this way, we are left with a Hamilton cycle Γ^{\prime} in $G-\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$.
- Set $x^{*}{ }_{i}=$ true iff Γ^{\prime} traverses row i left to right.
- Since Γ visits each clause node C_{j}, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. -

3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph $G=(V, E)$, does there exists a simple path consisting of at least k edges?

Theorem. 3 -SAT $\leq{ }_{P}$ LONGEST-PATH.

Pf 1. Redo proof for Dir-Ham-CyCLE, ignoring back-edge from t to s.
Pf 2. Show Ham-Cycle \leq_{P} Longest-Path.

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

13,509 cities in the United States
http:/ /www.tsp.gatech.edu

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

optimal TSP tour
http:/ /www.tsp.gatech.edu

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

optimal TSP tour
http:/ /www.tsp.gatech.edu

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CyCle. Given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V ?

Theorem. HAM-CYCLE \leq_{P} TSP.
Pf.

- Given instance $G=(V, E)$ of HAM-CYCLE, create n cities with distance function

$$
d(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { if }(u, v) \notin E\end{cases}
$$

- TSP instance has tour of length $\leq n$ iff G has a Hamilton cycle. -

Remark. TSP instance satisfies triangle inequality: $d(u, w) \leq d(u, v)+d(v, w)$.

Polynomial-time reductions

Section 8.6

8. Intractability I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-dimensional matching

3D-MATChing. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

instructor	course	time
Wayne	$\cos 226$	TTh 11-12:20
Wayne	$\cos 423$	MW 11-12:20
Wayne	$\cos 423$	TTh 11-12:20
Tardos	$\cos 423$	TTh 3-4:20
Tardos	$\cos 523$	TTh 3-4:20
Kleinberg	$\cos 226$	TTh 3-4:20
Kleinberg	$\cos 226$	MW 11-12:20
Kleinberg	$\cos 423$	MW 11-12:20

3-dimensional matching

3d-Matching. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

$$
\begin{array}{llll}
X=\left\{x_{1}, x_{2}, x_{3}\right\}, & Y=\left\{y_{1}, y_{2}, y_{3}\right\}, & Z=\left\{z_{1}, z_{2}, z_{3}\right\} \\
T_{1}=\left\{x_{1}, y_{1}, z_{2}\right\}, & T_{2}=\left\{x_{1}, y_{2}, z_{1}\right\}, & T_{3}=\left\{x_{1}, y_{2}, z_{2}\right\} \\
T_{4}=\left\{x_{2}, y_{2}, z_{3}\right\}, & T_{5}=\left\{x_{2}, y_{3}, z_{3}\right\}, & \\
T_{7}=\left\{x_{3}, y_{1}, z_{3}\right\}, & T_{8}=\left\{x_{3}, y_{1}, z_{1}\right\}, & T_{9}=\left\{x_{3}, y_{2}, z_{1}\right\}
\end{array}
$$

an instance of $3 \mathbf{d}$-matching (with $\mathbf{n}=3$)

Remark. Generalization of bipartite matching.

3-dimensional matching

3d-Matching. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem. 3-SAT \leq_{P} 3D-MATCHING.
Pf. Given an instance Φ of 3 -SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff Φ is satisfiable.

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1) $\swarrow^{\text {number of clauses }}$

- Create gadget for each variable x_{i} with $2 k$ core elements and $2 k$ tip ones.

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable x_{i} with $2 k$ core elements and $2 k$ tip ones.
- No other triples will use core elements.
- In gadget for x_{i}, any perfect matching must use either all gray triples (corresponding to $x_{i}=$ true) or all blue ones (corresponding to $x_{i}=$ false).

3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)

- Create gadget for each clause C_{j} with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_{1} or (ii) blue core of x_{2} or (iii) grey core of x_{3}.
clause 1 gadget

3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)

- There are $2 n k$ tips: $n k$ covered by blue/gray triples; k by clause triples.
- To cover remaining $(n-1) k$ tips, create $(n-1) k$ cleanup gadgets: same as clause gadget but with $2 n k$ triples, connected to every tip.

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.
Q. What are X, Y, and Z ?

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.
Q. What are X, Y, and Z ?
A. $X=$ red, $Y=$ green, and $Z=$ blue.

3-satisfiability reduces to 3 -dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Pf. \Rightarrow If 3d-matching, then assign x_{i} according to gadget x_{i}.
Pf. \Leftarrow If Φ is satisfiable, use any true literal in C_{j} to select gadget C_{j} triple. •

Section 8.7

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-colorability

3-Color. Given an undirected graph G, can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?

yes instance

Application: register allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names; edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-Color \leq_{P} K-ReGister-Allocation for any constant $k \geq 3$.

3 -satisfiability reduces to 3 -colorability

Theorem. 3-SAT $\leq_{P} 3$-Color.

Pf. Given 3-Sat instance Φ, we construct an instance of 3-Color that is 3 -colorable iff Φ is satisfiable.

3 -satisfiability reduces to 3 -colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_{j}, add a gadget of 6 nodes and 13 edges.
to be described later

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT instance Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

Polynomial-time reductions

Section 8.8

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Subset sum

SUBSET-SUM. Given natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Ex. $\{1,4,16,64,256,1040,1041,1093,1284,1344\}, W=3754$.
Yes. $1+16+64+256+1040+1093+1284=3754$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

Theorem. 3-SAT $\leq{ }_{P}$ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of Subset-Sum that has solution iff Φ is satisfiable.

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2 n+2 k$ decimal integers, each of $n+k$ digits:

- Include one digit for each variable x_{i} and for each clause C_{j}.
- Include two numbers for each variable x_{i}.
- Include two numbers for each clause C_{j}.
- Sum of each x_{i} digit is 1 ; sum of each C_{j} digit is 4 .

Key property. No carries possible \Rightarrow each digit yields one equation.

	x_{1}	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	
x_{1}	1	0	0	0	1	0	100,010
$\neg x_{1}$	1	0	0	1	0	1	100,101
x_{2}	0	1	0	1	0	0	10,100
$\neg x_{2}$	0	1	0	0	1	1	10,011
x_{3}	0	0	1	1	1	0	1,110
$\neg x_{3}$	0	0	1	0	0	1	1,001
	0	0	0	1	0	0	100
	0	0	0	2	0	0	200
	0	0	0	0	1	0	10
	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2
W	1	1	1	4	4	4	111,444

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.
Pf. \Rightarrow Suppose Φ is satisfiable.

- Choose integers corresponding to each true literal.
- Since Φ is satisfiable, each C_{j} digit sums to at least 1 from x_{i} rows.
- Choose dummy integers to make clause digits sum to 4.

$$
\begin{aligned}
& C_{1}=\neg x_{1} \vee x_{2} \vee x_{3} \\
& C_{2}=x_{1} \vee \neg x_{2} \vee x_{3} \\
& C_{3}=\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

	x_{1}	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	
x_{1}	1	0	0	0	1	0	100,010
$\neg x_{1}$	1	0	0	1	0	1	100,101
x_{2}	0	1	0	1	0	0	10,100
$\neg x_{2}$	0	1	0	0	1	1	10,011
x_{3}	0	0	1	1	1	0	1,110
$\neg x_{3}$	0	0	1	0	0	1	1,001
dummies to get clause columns to sum to 4	0	0	0	1	0	0	100
	0	0	0	2	0	0	200
	0	0	0	0	1	0	10
	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2
	1	1	1	4	4	4	111,444
			ET-S	um in	tanc		

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.
Pf. \Leftarrow Suppose there is a subset that sums to W.

- Digit x_{i} forces subset to select either row x_{i} or $\neg x_{i}$ (but not both).
- Digit C_{j} forces subset to select at least one literal in clause.
- Assign $x_{i}=$ true iff row x_{i} selected.

-		x_{1}	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	
	x_{1}	1	0	0	0	1	0	100,010
	$\neg x_{1}$	1	0	0	1	0	1	100,101
	x_{2}	0	1	0	1	0	0	10,100
	$\neg x_{2}$	0	1	0	0	1	1	10,011
	x_{3}	0	0	1	1	1	0	1,110
	$\neg x_{3}$	0	0	1	0	0	1	1,001
dummies to get clause columns to sum to 4	(0	0	0	1	0	0	100
		0	0	0	2	0	0	200
		0	0	0	0	1	0	10
		0	0	0	0	2	0	20
		0	0	0	0	0	1	1
	(0	0	0	0	0	2	2
	W	1	1	1	4	4	4	111,444

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Randall Munro
http:/ /xkcd.com/c287.html

Partition

SUBSET-SUM. Given natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

PARTITION. Given natural numbers v_{1}, \ldots, v_{m}, can they be partitioned into two subsets that add up to the same value $1 / 2 \Sigma_{i} v_{i}$?

Theorem. SUBSET-SUM $\leq{ }_{P}$ PARTITION.
Pf. Let W, w_{1}, \ldots, w_{n} be an instance of SUbSEt-Sum.

- Create instance of Partition with $m=n+2$ elements.
- $v_{1}=w_{1}, v_{2}=w_{2}, \ldots, v_{n}=w_{n}, v_{n+1}=2 \Sigma_{i} w_{i}-W, v_{n+2}=\Sigma_{i} w_{i}+W$
- Lemma: there exists a subset that sums to W iff there exists a partition since elements v_{n+1} and v_{n+2} cannot be in the same partition. -

$$
v_{n+1}=2 \Sigma_{i} w_{i}-W
$$

W
subset A
$v_{n+2}=\Sigma_{i} w_{i}+W$
$\Sigma_{i} w_{i}-W$
subset B

Scheduling with release times

Schedule. Given a set of n jobs with processing time t_{j}, release time r_{j}, and deadline d_{j}, is it possible to schedule all jobs on a single machine such that job j is processed with a contiguous slot of t_{j} time units in the interval $\left[r_{j}, d_{j}\right]$?

Ex.

Scheduling with release times

Theorem. Subset-Sum $\leq{ }_{P}$ SChedule.
Pf. Given SUBSET-SUM instance w_{1}, \ldots, w_{n} and target W, construct an instance of Schedule that is feasible iff there exists a subset that sums to exactly W.

Construction.

- Create n jobs with processing time $t_{j}=w_{j}$, release time $r_{j}=0$, and no deadline ($d_{j}=1+\Sigma_{j} w_{j}$).
- Create job 0 with $t_{0}=1$, release time $r_{0}=W$, and deadline $d_{0}=W+1$.
- Lemma: subset that sums to W iff there exists a feasible schedule. •

Polynomial-time reductions

Karp's 21 NP-complete problems

8. INTRACTABILITY II

, Pvs. NP

- NP-complete
- co-NP
, NP-hard

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne
http: / / www.cs.princeton.edu / ~wayne/kleinberg-tardos

Recap

8. IntRACTABILITY II

- Pvs. NP
- NP-complete
- co-NP
- Ninhard

Section 8.3

Decision problems

Decision problem.

- Problem X is a set of strings.
- Instance s is one string.
- Algorithm A solves problem $X: A(s)=y e s$ iff $s \in X$.

Def. Algorithm A runs in polynomial time if for every string $s, A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.
length of s

Ex.

- Problem Primes $=\{2,3,5,7,11,13,17,23,29,31,37, \ldots$.$\} .$
- Instance $s=592335744548702854681$.
- AKS algorithm Primes in $O\left(|s|^{8}\right)$ steps.

Definition of P

P. Decision problems for which there is a poly-time algorithm.

Problem	Description	Algorithm	yes	no
MULTIPLE	Is x a multiple of y ?	grade-school division	51, 17	51, 16
Rel-Prime	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
Primes	Is x prime?	AKS (2002)	53	51
Edit-Distance	Is the edit distance between x and y less than 5 ?	dynamic programming	niether neither	acgggt ttttta
L-Solve	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination	$\left[\begin{array}{rrr}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right],\left[\begin{array}{r}4 \\ 2 \\ 36\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
St-Conn	Is there a path between s a nd t in a graph G ?	depth-first search (Theseus)	\backslash	

NP

Certification algorithm intuition.

- Certifier views things from "managerial" viewpoint.
- Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

Def. Algorithm $C(s, t)$ is a certifier for problem X if for every string s, $s \in X$ iff there exists a string t such that $C(s, t)=y e s$.
"certificate" or "witness"
Def. NP is the set of problems for which there exists a poly-time certifier.

- $C(s, t)$ is a poly-time algorithm.
- Certificate t is of polynomial size: $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$

Remark. NP stands for nondeterministic polynomial time.

Certifiers and certificates: composite

Composites. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Such a certificate exists iff s is composite. Moreover $|t| \leq|s|$.

Certifier. Check that $1<t<s$ and that s is a multiple of t.

Conclusion. Composites \in NP.

Certifiers and certificates: 3-satisfiability

3-SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

$$
\begin{aligned}
\text { instance s } & \Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{lll}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \\
\text { certificate } \mathrm{t} & x_{1}=\text { true, } x_{2}=\text { true, } x_{3}=\text { false, } x_{4}=\text { false }
\end{array}\right.
\end{aligned}
$$

Conclusion. 3-SAT \in NP.

Certifiers and certificates: Hamilton path

Ham-Path. Given an undirected graph $G=(V, E)$, does there exist a simple path P that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes.

Conclusion. Ham-Ратн $\in \mathbf{N P}$.

Definition of NP

NP. Decision problems for which there is a poly-time certifier.

Problem	Description	Algorithm	yes	no
L-Solve	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination	$\left[\begin{array}{rrr}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right],\left[\begin{array}{r}4 \\ 2 \\ 36\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
COMPOSITES	Is x composite?	AKS (2002)	51	53
FACTOR	Does x have a nontrivial factor less than y ?	?	(56159, 50)	(55687, 50)
SAT	Is there a truth assignment that satisfies the formula?	?	$\begin{aligned} \neg x_{1} & \vee x_{2} \\ x_{1} & \vee x_{2} \end{aligned}$	$\begin{gathered} \neg x_{2} \\ \neg x_{1} \vee x_{2} \\ x_{1} \vee x_{2} \end{gathered}$
3-COLOR	Can the nodes of a graph G be colored with 3 colors?	?	<1	
Ham-Path	Is there a simple path between s and t that visits every node?	?		

Definition of NP

NP. Decision problems for which there is a poly-time certifier.
" NP captures vast domains of computational, scientific, and mathematical endeavors, and seems to roughly delimit what mathematicians and scientists have been aspiring to compute feasibly. " - Christos Papadimitriou
"In an ideal world it would be renamed P vs VP." - Clyde Kruskal

P, NP, and EXP

P. Decision problems for which there is a poly-time algorithm.

NP. Decision problems for which there is a poly-time certifier.
EXP. Decision problems for which there is an exponential-time algorithm.

Claim. $\mathbf{P} \subseteq \mathbf{N P}$.
Pf. Consider any problem $X \in \mathbf{P}$.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate $t=\varepsilon$, certifier $C(s, t)=A(s)$.

Claim. NP \subseteq EXP.
Pf. Consider any problem $X \in$ NP.

- By definition, there exists a poly-time certifier $C(s, t)$ for X.
- To solve input s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$.
- Return yes if $C(s, t)$ returns yes for any of these potential certificates.

Remark. Time-hierarchy theorem implies $\mathbf{P} \subsetneq$ EXP.

The main question: P vs. NP
Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.
"intractable"

The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel] Is the decision problem as easy as the certification problem?

If $\mathbf{P}=\mathbf{N P}$

If yes. Efficient algorithms for 3-SAT, TSP, 3-Color, FACTOR, ... If no. No efficient algorithms possible for 3-SAT, TSP, 3-Color, ...

Consensus opinion. Probably no.

Possible outcomes

$P \neq N P$.
" I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture:
(i) It is a legitimate mathematical possibility and (ii) I do not know."

- Jack Edmonds 1966

Possible outcomes

$P \neq N P$.
" In my view, there is no way to even make intelligent guesses about the answer to any of these questions. If I had to bet now, I would bet that P is not equal to NP. I estimate the half-life of this problem at 25-50 more years, but I wouldn't bet on it being solved before 2100. "

- Bob Tarjan

[^0]
Possible outcomes

$$
P=N P .
$$

" $P=$ NP. In my opinion this shouldn't really be a hard problem; it's just that we came late to this theory, and haven't yet developed any techniques for proving computations to be hard. Eventually, it will just be a footnote in the books. " - John Conway

Other possible outcomes

$\mathbf{P}=\mathbf{N P}$, but only $\Omega\left(n^{100}\right)$ algorithm for 3-SAT.
$\mathbf{P} \neq \mathbf{N P}$, but with $O\left(n^{\log ^{*} n}\right)$ algorithm for 3-SAT.
$\mathbf{P}=\mathbf{N P}$ is independent (of ZFC axiomatic set theory).
"It will be solved by either 2048 or 4096. I am currently somewhat pessimistic. The outcome will be the truly worst case scenario: namely that someone will prove " $P=$ NP because there are only finitely many obstructions to the opposite hypothesis"; hence there will exists a polynomial time solution to SAT but we will never know its complexity!" - Donald Knuth

Millennium prize

Millennium prize. $\$ 1$ million for resolution of $\mathbf{P}=\mathbf{N P}$ problem.

Millennium Problems
In order to celebrate mathematics in the new millennium, The Clay Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven Prize Problems. The Scientific Advisory Board of CMI selected these problems, focusing on important classic questions that have resisted solution over the years. The Board of Directors of CMI designated a $\$ 7$ million prize fund for the solution to these problems, with $\$ 1$ million allocated to each. During the Millennium Meeting held on May 24, 2000 at the Collège de France, Timothy Gowers presented a lecture entitled The Importance of Mathematics, aimed for the general public, while John Tate and Michael Atiyah spoke on the problems. The CMI invited specialists to formulate each problem.

Birch and Swinnerton-Dyer Conjecture
Hodge Conjecture
Navier-Stokes Equations
P vs NP
Poincaré Conjecture

- Riemann Hypothesis
' Yana-Mills Theory
Rules
Millennium Meeting Videos

Looking for a job?

Some writers for the Simpsons and Futurama.

- J. Steward Burns. M.S. in mathematics (Berkeley '93).
- David X. Cohen. M.S. in computer science (Berkeley '92).
- Al Jean. B.S. in mathematics. (Harvard '81).
- Ken Keeler. Ph.D. in applied mathematics (Harvard '90).
- Jeff Westbrook. Ph.D. in computer science (Princeton '89).

Copyright © 1990, Matt Groening

Copyright © 2000, Twentieth Century Fox

8. INTRACTABILITY II

- Pvs. NP
- NP-complete
, co-NP
- NP-hard

Polynomial transformation

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any input x to X, we can construct an input y such that x is a yes instance of X iff y is a yes instance of Y.

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

NP-complete

NP-complete. A problem $Y \in \mathbf{N P}$ with the property that for every problem $X \in \mathbf{N P}, X \leq{ }_{p} Y$.

Theorem. Suppose $Y \in \mathbf{N P}$-complete. Then $Y \in \mathbf{P}$ iff $\mathbf{P}=\mathbf{N P}$.
Pf. \Leftarrow If $\mathbf{P}=\mathbf{N} \mathbf{P}$, then $Y \in \mathbf{P}$ because $Y \in \mathbf{N} \mathbf{P}$.
Pf. \Rightarrow Suppose $Y \in \mathbf{P}$.

- Consider any problem $X \in \mathbf{N P}$. Since $X \leq_{p} Y$, we have $X \in \mathbf{P}$.
- This implies NP $\subseteq \mathbf{P}$.
- We already know $\mathbf{P} \subseteq \mathbf{N P}$. Thus $\mathbf{P}=\mathbf{N P}$. \cdot

Fundamental question. Do there exist "natural" NP-complete problems?

Circuit satisfiability

CIRCUIT-SAT. Given a combinational circuit built from AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1 ?
yes: 101

The "first" NP-complete problem

Theorem. CIRCUIT-SAT \in NP-complete. [Cook 1971, Levin 1973]

The Complexity of Theorem-Proving Procedures
Stephen A. Cook

University of Toronto

It is shown that any recognition problem solved by a polynomial timenachine can be "reduced" to the maem of determining whether a given propositional formula is a tautology Here, that the first problem can be solved deterministically in polynonial time provided an oracle is
vailable for solving the second available for solving the secon
From this notion of reducible, polynomial degrees of difficulty are
defined, and it is shown that the problem of determining tautologyhood pros the same polynomial degree as the
has
problem of determining whether the problem of determining whether the
first of two given graphs is isofirst of two given graphs is iso-
morphic to a subgraph of the second. Other examples are discussed. A
method of measuring the complexi nethod of measuring the complexity of
proof procedures for the predicate proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of strings means a set of strings on This alphabet is large enough to in-
clude symbols for all sets described cluce symbols for all sets described here. Ac recognition devices, un1ess

1. Tautologies and Polynomial Re-

Reducibility.
Let us fix a formalism for
the propositional calculus in
hich formulas are written as
trings on Σ. Since we will
quire infinitely many proposition ymbo1s (atoms), each such symb willonsist of a member of notation to distinguish that ymbol. Thus a formula of 1 ength can only have about $n / 10 g n$
distinct function and predicate symbols. The logical connectives
The set of tautologies
The set of tautologies
(denoted by $\{$ tautologies $\}$) is a
certain recursive set of strings on his alphabet, and we are interes
n the problem of finding a good ower bound on its possible reco ition times. We provide no such give evidence that \{tautologies\} is difficult set to recognize, since
many apparently difficult problems can be reduced to determining tau tologyhood. By reduced we mean, oughly speaking, that if tautoby an "oracle") then these problem could be decided in polynomial time. n order to make this notion precise, we introduce query machines, which
are like Turing machines with oracles
in [1].
Aring query machine is a multitape ape called the query tape, and the query state, yes state, and no

 sis a computation $\frac{1 \text {-computation of }}{\text { of }}$ in wich
in
initially M is in the initial nitially M is in the initial
state and has an input string
w state and has an input string
its input tape, and each time
M assumes the query state there is a
string u on the query tape, and string u on the query tape, and
the next state M assumes is the yes state if $u \in T$ and the no state
if $u \notin T$. We think of an f $u \notin T$. We think of an "oracle",
which knows T, placing M in the yes state or no state.

Definition
ible (P st $\begin{gathered}\text { S of strings } \\ \text { is } \\ \text { polynomial }\end{gathered}$ to $\frac{\mathrm{P} \text {-redu- }}{\text { set }}$ cible (P for polynomial) to a set query machine M and a polynomial Q(n) such that for each input string
w , the T -computation of M with input w halts within $Q(|w|)$ steps ($|w|$ is the length of w, and ends

It is not hard to see that P-reducibility is a transitive re-
lation. Thus the relation E on

ПРОБЛЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ
\square

кРАТ КИЕ СООВЩЕ НИЯ

УНИВЕРСАЛЬНЫЕ ЗАДАЧИ ПЕРЕБОРА
Л. А. Левии

В статье рассматривается несколько известных массовых задач
 ного типа.

После уточнения понятия алгоритма была доказана алгоритмическая неразре
лшимость ряда классических массовых проблем (например, проблем тождества әле ментов групा, гомеоморфности многообррзиї, разрешимости диофантовых уравнений и других. Тем самым оыл снят вопрос о нахождении практического спосооа их р p щения. Однако существование алгоритмов для решения других задач не снимет
 дачами: миниммзадии булевых функций, поискс доказательств ограничченной длинны аллоритмами, состоящими в переборе всех возможностей. оддако эти алгоритмы тр
буют экспоненциального времени работы и у математиков сложилось убеждение ч боют экспоненциального времени работы и у математиков сложилось убеждение , что
 лось никому. (Науример, до сих пор не доказано, что для нахож
Однако если предположить, что вообще существует какая-нибудь (хотя бы искус-
ственно построенная) массовая задача переборного типа, неразрешимая простыми ственно построенная) массовая задача переборного типа, неразрешимая простым
(в смысле объема вычислений) алгоритмами, то можно показать, что этим же свой
 таты статы.
Функции $f(n)$ и $g(n)$ будем называть сравнимыми, если при некотором k $f(n) \leqslant(g(n)+2)^{k} \quad$ и $g(n) \leqslant(f(n)+2)^{k}$.

Аналоия буден \leq термин «меньше

Определение. Задачей переборного типа (или просто переборной задачей) будем называть задачу вида «по данному x найти какое-нибудь y длины, сравнимой проверяемое алгоритмом, время работыы которого сравнимо с с длиной x. (Под алто ритмом здесь можно понимать, например, алгоритмы Колмогорова - Успенского илі машины Тьюринга, или нормальные алгоритмы; x, y-двоичные слова). Квазине
реборной вадачей будем называть задачу выдснения, существует лии такое y. Мы рассмотрим шесть задач этих тйов. Рассматриваемые в них объекты коди-
руются естественным образом в виде двоичных слов при
 Задача 1. Заданы списком конечное множество и покрытие его ғоо-элементным
подмножествами. Найти подпокрытие заданной мощности (соответственно выяснить существует ли оно). Задача 2. Таблично задана частичная булева функция. Найти заданного размера
дизъюнктивную нормальную форму, реализующую әту функцию в области определения (соответственно выяснить существует ли она).
Задача 3 . Выяснить, выввдима или опровержима данная формула исчисления вы-
сказываний. (Или что то же самое равна ли ронстанте данная бууева формла) сказываний. (Или, что то же самое, равна ли константе данная булева формула.)
задача 4. Даны два графа. Найти гомоморфизм одиого на другой (выяснить его существование).
Задача 5. Даны два графа. Найти изоморфизм одного в другой (на его часть)
Задаиа 6 . Рассматриваются матрицы из целых чисел от 1 до 100 и некоторое усло вие о том, какие числа в них могут соседствовать по вертикали и какие по горизон-
тали. Заданы числа на граиице и требуется продолжить их на всьо матрицу с со-

The "first" NP-complete problem

Theorem. CIRCUIT-SAT \in NP-complete.
Pf sketch.

- Clearly, Circuit-Sat \in NP.
- Any algorithm that takes a fixed number of bits n as input and produces a yes or no answer can be represented by such a circuit.
- Moreover, if algorithm takes poly-time, then circuit is of poly-size.
- Consider any problem $X \in \mathbf{N P}$. It has a poly-time certifier $C(s, t)$: $s \in X$ iff there exists a certificate t of length $p(|s|)$ such that $C(s, t)=$ yes.
- View $C(s, t)$ as an algorithm with $|s|+p(|s|)$ input bits and convert it into a poly-size circuit K.
- first $|s|$ bits are hard-coded with s
- remaining $p(|s|)$ bits represent (unknown) bits of t
- Circuit K is satisfiable iff $C(s, t)=y e s$.

Example

Ex. Construction below creates a circuit K whose inputs can be set so that it outputs 1 iff graph G has an independent set of size 2.

$G=(V, E), n=3$

Establishing NP-completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe. To prove that $Y \in$ NP-complete:

- Step 1. Show that $Y \in \mathbf{N P}$.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} Y$.

Theorem. If $X \in \mathbf{N P}$-complete, $Y \in \mathbf{N P}$, and $X \leq_{p} Y$, then $Y \in \mathbf{N P}$-complete.
Pf. Consider any problem $W \in \mathbf{N P}$. Then, both $W \leq_{p} X$ and $X \leq_{p} Y$.

- By transitivity, $W \leq_{p} Y$.
- Hence $Y \in \mathbf{N P}$-complete. •
by definition of by assumption
NP-complete

3-satisfiability is NP-complete

Theorem. 3-SAT \in NP-complete.
Pf.

- Suffices to show that Circuit-Sat $\leq_{p} 3$-Sat since 3 -Sat \in NP.
- Given a combinational circuit K, we construct an instance Φ of 3-SAT that is satisfiable iff the inputs of K can be set so that it outputs 1 .

3-satisfiability is NP-complete

Construction. Let K be any circuit.

Step 1. Create a 3-SAT variable x_{i} for each circuit element i.

Step 2. Make circuit compute correct values at each node:

- $x_{2}=\neg x_{3} \quad \Rightarrow$ add 2 clauses: $x_{2} \vee x_{3}, \overline{x_{2}} \vee \overline{x_{3}}$
- $x_{1}=x_{4} \vee x_{5} \Rightarrow$ add 3 clauses: $x_{1} \vee \overline{x_{4}}, x_{1} \vee \overline{x_{5}}, \overline{x_{1}} \vee x_{4} \vee x_{5}$
- $x_{0}=x_{1} \wedge x_{2} \Rightarrow$ add 3 clauses: $\overline{x_{0}} \vee x_{1}, \overline{x_{0}} \vee x_{2}, x_{0} \vee \overline{x_{1}} \vee \overline{x_{2}}$

Step 3. Hard-coded input values and output value.

- $x_{5}=0 \Rightarrow$ add 1 clause: $\overline{x_{5}}$
- $x_{0}=1 \Rightarrow$ add 1 clause: x_{0}

3-satisfiability is NP-complete

Construction. [continued]

Step 4. Turn clauses of length 1 or 2 into clauses of length 3.

- Create four new variables z_{1}, z_{2}, z_{3}, and z_{4}.
- Add 8 clauses to force $z_{1}=z_{2}=$ false:

$$
\begin{aligned}
& \left(\overline{z_{1}} \vee z_{3} \vee z_{4}\right),\left(\overline{z_{1}} \vee z_{3} \vee \overline{z_{4}}\right), \quad\left(\overline{z_{1}} \vee \overline{z_{3}} \vee z_{4}\right),\left(\overline{z_{1}} \vee \overline{z_{3}} \vee \overline{z_{4}}\right) \\
& \left(\overline{z_{2}} \vee z_{3} \vee z_{4}\right),\left(\overline{z_{2}} \vee z_{3} \vee \overline{z_{4}}\right), \quad\left(\overline{z_{2}} \vee \overline{z_{3}} \vee z_{4}\right),\left(\overline{z_{2}} \vee \overline{z_{3}} \vee \overline{z_{4}}\right)
\end{aligned}
$$

- Replace any clause with a single term (t_{i}) with ($t_{i} \vee z_{1} \vee z_{2}$).
- Replace any clause with two terms $\left(t_{i} \vee t_{j}\right)$ with $\left(t_{i} \vee t_{j} \vee z_{1}\right)$.

3-satisfiability is NP-complete

Lemma. Φ is satisfiable iff the inputs of K can be set so that it outputs 1 .

Pf. \Leftarrow Suppose there are inputs of K that make it output 1 .

- Can propagate input values to create values at all nodes of K.
- This set of values satisfies Φ.

Pf. \Rightarrow Suppose Φ is satisfiable.

- We claim that the set of values corresponding to the circuit inputs constitutes a way to make circuit K output 1.
- The 3-Sat clauses were designed to ensure that the values assigned to all node in K exactly match what the circuit would compute for these nodes. -

Implications of Karp

Implications of Cook-Levin

Implications of Karp + Cook-Levin

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing + covering problems: Set-Cover, Vertex-Cover,Independent-Set.
- Constraint satisfaction problems: Circuit-Sat, Sat, 3-SAT.
- Sequencing problems: HAM-CyCLE, TSP.
- Partitioning problems: 3d-Matching, 3-Color.
- Numerical problems: Subset-Sum, Partition.

Practice. Most NP problems are known to be either in P or NP-complete.

Notable exceptions. Factor, Graph-Isomorphism, Nash-EQuilibrium.

Theory. [Ladner 1975] Unless P = NP, there exist problems in NP that are neither in \mathbf{P} nor NP-complete.

More hard computational problems

Garey and Johnson. Computers and Intractability.

- Appendix includes over 300 NP-complete problems.
- Most cited reference in computer science literature.

Most Cited Computer Science Citations

This list is generated from documents in the CiteSeer ${ }^{x}$ database as of January 17, 2013. This list is automatically generated and may contain errors. The list is generated in batch mode and citation counts may differ from those currently in the CiteSeer ${ }^{x}$ database, since the database is continuously updated.
All Years | 1990 | 1991| 1992 | 1993 | 1994 | 1995 | 1996| 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013

1. M R Garey, D S Johnson

Computers and Intractability. A Guide to the Theory of NP-Completeness 1979 8665
2. T Cormen, C E Leiserson, R Rivest Introduction to Algorithms 1990 7210
3. V N Vapnik

The nature of statistical learning theory 1998 6580
4. A P Dempster, N M Laird, D B Rubin

Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977 6082
5. T Cover, J Thomas

Elements of Information Theory 1991
6075
6. D E Goldberg

Genetic Algorithms in Search, Optimization, and Machine Learning, 1989
5998
7. J Pearl

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 1988 5582
8. E Gamma, R Helm, R Johnson, J Vlissides

Design Patterns: Elements of Reusable Object-Oriented Software 1995 4614
9. CEShannon

A mathematical theory of communication Bell Syst. Tech. J, 1948 4118
10. JR Quinlan

C4.5: Programs for Machine Learning 1993
4018

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.
Chemical engineering. Heat exchanger network synthesis.
Chemistry. Protein folding.
Civil engineering. Equilibrium of urban traffic flow.
Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.
Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.
Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer a_{1}, \ldots, a_{n}, compute $\int_{0}^{2 \pi} \cos \left(a_{1} \theta\right) \times \cos \left(a_{2} \theta\right) \times \cdots \times \cos \left(a_{n} \theta\right) d \theta$
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.
Physics. Partition function of 3d Ising model.
Politics. Shapley-Shubik voting power.
Recreation. Versions of Sudoko, Checkers, Minesweeper, Tetris.
Statistics. Optimal experimental design.

Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]

- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (more than "compiler", "OS", "database").
- Broad applicability and classification power.

NP-completeness can guide scientific inquiry.

- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager finds closed-form solution to 2d-IsING in tour de force.
- 19xx: Feynman and other top minds seek solution to 3d-IsING.
- 2000: Istrail proves 3D-Ising \in NP-complete. statistical mechanics

P vs. NP revisited

Overwhelming consensus (still). $P \neq N P$.

Why we believe $\mathbf{P} \neq \mathbf{N P}$.
" We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton, Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the Pyramids, precisely because they seem to require a leap which cannot be made by everyone, let alone a by simple mechanical device. "

- Avi Wigderson

You NP-complete me

Tロu
 NP-Camplete Me

Section 8.9

8. INTRACTABILITY II

- Pvs. NP
- NP-complete
- co-NP
- NP-hard

Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1. Sat vs. Tautology.

- Can prove a CNF formula is satisfiable by specifying an assignment.
- How could we prove that a formula is not satisfiable?

Ex 2. Ham-Cycle vs. No-Ham-Cycle.

- Can prove a graph is Hamiltonian by specifying a permutation.
- How could we prove that a graph is not Hamiltonian?
Q. How to classify Tautology and No-Hamilton-Cycle?
- Sat \in NP-complete and Sat \equiv_{p} Tautology.
- Ham-Cycle \in NP-complete and Ham-Cycle \equiv_{P} No-Ham-Cycle.
- But neither Tautology nor No-Ham-CyCle are known to be in NP.

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. Sat, Hamilton-Cycle, and Composite.

Def. Given a decision problem X, its complement \bar{X} is the same problem with the yes and no answers reverse.

Ex. $X=\{0,1,4,6,8,9,10,12,14,15, \ldots\}$ $\bar{X}=\{2,3,5,7,11,13,17,23,29, \ldots\}$
co-NP. Complements of decision problems in NP.
Ex. Tautology, No-Hamilton-Cycle, and Primes.
$\mathrm{NP}=\mathrm{co}-\mathrm{NP}$?

Fundamental open question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

Theorem. If $\mathbf{N P} \neq \mathbf{c o} \mathbf{- N P}$, then $\mathbf{P} \neq \mathbf{N P}$.
Pf idea.

- \mathbf{P} is closed under complementation.
- If $\mathbf{P}=\mathbf{N P}$, then $\mathbf{N P}$ is closed under complementation.
- In other words, NP = co-NP.
- This is the contrapositive of the theorem.

Good characterizations

Good characterization. [Edmonds 1965] NP \cap co-NP.

- If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.

- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that $|N(S)|<|S|$.

Good characterizations

We seek a good characterization of the minimum number of independent sets into which the columns of a matrix of M_{F} can be partitioned. As the criterion of "good" for the characterization we apply the "principle of the absolute supervisor." The good characterization will describe certain information about the matrix which the supervisor can require his assistant to search out along with a minimum partition and which the supervisor can then use with ease to verify with mathematical certainty that the partition is indeed minimum. Having a good characterization does not mean necessarily that there is a good algorithm. The assistant might have to kill himself with work to find the information and the partition.

Good characterizations

Observation. $\mathbf{P} \subseteq \mathbf{N P} \cap$ co-NP.

- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in \mathbf{P}.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Fundamental open question. Does $\mathbf{P}=\mathbf{N P} \cap \mathbf{c o - N P}$?

- Mixed opinions.
- Many examples where problem found to have a nontrivial good characterization, but only years later discovered to be in \mathbf{P}.

Linear programming. Given $A \in \Re^{m \times n}, b \in \Re^{m}, c \in \Re^{n}$, and $\alpha \in \Re$, does there exist $x \in \Re^{n}$ such that $A x \leq b, x \geq 0$ and $c^{\mathrm{T}} x \geq \alpha$?

Theorem. [Gale-Kuhn-Tucker 1948] Linear-Programming $\in \mathbf{N P} \cap$ co-NP.
Pf sketch. If (P) and (D) are nonempty, then $\max =\min$.
(P) $\max c^{T} x$

$$
\begin{aligned}
\text { s.t. } A x & \leq b \\
x & \geq 0
\end{aligned}
$$

(D) $\min y^{T} b$

$$
\begin{aligned}
\text { s.t. } A^{T} y & \geq c \\
y & \geq 0
\end{aligned}
$$

Chapter XIX
LINEAR PROGRAMMING AND THE THEORY OF GAMES ${ }^{1}$ By David Gale, Harold W. Kuhn, and Albert W. Tucker ${ }^{2}$

The basic "scalar" problem of linear programming is to maximize (or minimize) a linear function of several variables constrained by a system of linear inequalities [Dantzig, II]. A more general "vector" problem calls for maximizing (in a sense of partial order) a system of linear functions of several variables subject to a system of linear inequalities and, perhaps, linear equations [Koopmans, III]. The purpose of this chapter is to establish theorems of duality and existence for general "matrix" problems of linear programming which contain the "scalar" and "vector" problems as special cases, and to relate these general problems to the theory of zero-sum two-person games.

Linear programming is in NP \cap co-NP

Linear programming. Given $A \in \Re^{m \times n}, b \in \Re^{m}, c \in \Re^{n}$, and $\alpha \in \Re$, does there exist $x \in \Re^{n}$ such that $A x \leq b, x \geq 0$ and $c^{\mathrm{T}} x \geq \alpha$?

Theorem. [Khachiyan 1979] Linear-Programming $\in \mathbf{P}$.

ЖУРНАЛ	
ВНЧИСЛИТЕЛЬНОИ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОИ ФИЗИКИ	
Тон 20	Январь 1980 Февраль

УДК 519.852
ПОЛИНОМИАЛЬНЫЕ АЛГОРИТМЬ В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ
Л. $\boldsymbol{F} \cdot \boldsymbol{X A Y И ת H}$
(Mockвa)
Построены точные алгоритмы линейного программирования, трудоемкость которых ограничена полиномом от длины двоичной записи задачи.

Primality testing is in NP \cap co-NP

Theorem. [Pratt 1975] Primes $\in \mathbf{N P} \cap$ co-NP.

SIAM J. Comput.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATT \dagger

Abstract

To prove that a number n is composite, it suffices to exhibit the working for the multiplication of a pair of factors. This working, represented as a string, is of length bounded by a polynomial in $\log _{2} n$. We show that the same property holds for the primes. It is noteworthy that almost no other set is known to have the property that short proofs for membership or nonmembership exist for all candidates without being known to have the property that such proofs are easy to come by. It remains an open problem whether a prime n can be recognized in only $\log _{2}^{\alpha} n$ operations of a Turing machine for any fixed α.

The proof system used for certifying primes is as follows. Axiom. $(x, y, 1)$. Inference Rules. $$
\begin{aligned} & \mathbf{R}_{1}: \quad(p, x, a), q \vdash(p, x, q a) \quad \text { provided } x^{(p-1) / q} \not \equiv 1(\bmod p) \text { and } q \mid(p-1) . \\ & \mathbf{R}_{2}: \quad(p, x, p-1) \vdash p \quad \text { provided } x^{p-1} \equiv 1(\bmod p) \end{aligned}
$$

Theorem 1. p is a theorem $\equiv p$ is a prime. Theorem 2. p is a theorem $\supset p$ has a proof of $\left\lceil 4 \log _{2} p\right\rceil$ lines.

Primality testing is in NP \cap co-NP

Theorem. [Pratt 1975] Primes $\in \mathbf{N P} \cap$ co-NP.
Pf sketch. An odd integer s is prime iff there exists an integer $1<t<s$ s.t.

```
\(t^{s-1} \equiv 1 \quad(\bmod s)\)
\(t^{(s-1) / p} \neq 1(\bmod s)\)
    for all prime divisors \(p\) of \(s-1\)
```


Certifier (s)
CHECK $s-1=2 \times 2 \times 3 \times 36473$.
СНеск $17^{s-1}=1(\bmod s)$.
СНеск $17^{(s-1) / 2} \equiv 437676(\bmod s)$.
CHECK $17^{(s-1) / 3} \equiv 329415(\bmod s)$.
CHECK $17^{(s-1) / 36,473} \equiv 305452(\bmod s)$.

use repeated squaring

Primality testing is in P

Theorem. [Agrawal-Kayal-Saxena 2004] PRIMEs $\in \mathbf{P}$.

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By Manindra Agrawal, Neeraj Kayal, and Nitin Saxena*

Abstract

We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.

Factoring is in NP \cap co-NP

FACTORIZE. Given an integer x, find its prime factorization.
FACTOR. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem. FACTOR $\equiv p$ FACTORIZE.
Pf.

- \leq_{P} trivial.
- \geq_{P} binary search to find a factor; divide out the factor and repeat. -

Theorem. FACTOR $\in \mathbf{N P} \cap \mathbf{C o} \mathbf{- N P}$.
Pf.

- Certificate: a factor p of x that is less than y.
- Disqualifier: the prime factorization of x (where each prime factor is less than y), along with a Pratt certificate that each factor is prime. -

Is factoring in P ?

Fundamental question. Is FACTOR $\in \mathbf{P}$.

Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359
RSA-704
($\$ 30,000$ prize if you can factor)

Exploiting intractability

Modern cryptography.

- Ex. Send your credit card to Amazon.
- Ex. Digitally sign an e-document.
- Enables freedom of privacy, speech, press, political association.

RSA. Based on dichotomy between complexity of two problems.

- To use: generate two random n-bit primes and multiply.
- To break: suffices to factor a $2 n$-bit integer.

```
    PȨQ PRIME
    N=PQ
ED \equiv1 MOD (P-1)(Q-1)
    C=MM
    M= C MODN
The RSA algorithm is the
most widely used method
of implementing public key
cryptography and has been
deployed in more than one
pplications
worldwide.
```


RSA sold
for $\$ 2.1$ billion

or design a t-shirt

Factoring on a quantum computer

Theorem. [Shor 1994] Can factor an n-bit integer in $O\left(n^{3}\right)$ steps on a "quantum computer."

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor ${ }^{\dagger}$

Abstract. A digital computer is generally believed to be an efficient universal computing device; that
s, it is believed to be able to simulate any physical computing device with an increase in
computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems. Efficien
randomized algorithms are given for these two problems on a hypothetical quantum com puter. These algorithms take a number of steps polynomial in the input size, for example, the number of digits of the integer to be factored.
2001. Factored $15=3 \times 5$ (with high probability) on a quantum computer.
2012. Factored $21=3 \times 7$.

Fundamental question. Does $\mathbf{P}=\mathbf{B Q P}$?

8. Intractability II

- P vs. NP
- NP-complete
- co-NIP
- NP-hard

A note on terminology

A TERMINOLOGICAL PROPOSAL

D. F. Knuth

While preparing a book on combinatorial algorithms, I felt a strong need for a new technical term, a word which is essentially a one-sided version of polynomial complete. A great many problems of practical interest have the property that they are at least as difficult to solve in polynomial time as those of the Cook-Karp class NP. I needed an adjective to convey such a degree of difficulty, both formally and informally; and since the range of practical applications is so broad, I felt it would be best to establish such a term as soon as possible.

The goal is to find an adjective x that sounds good in sentences like this:

The covering problem is x .
It is x to decide whether a given graph has a Hamiltonian circuit.
It is unknown whether or not primality testing is an x problem.

Note. The term x does not necessarily imply that a problem is in NP, just that every problem in NP poly-time reduces to x.

A note on terminology

Knuth's original suggestions.

- Hard.
- Tough.
so common that it is unclear whether it is being used in a technical sense
- Herculean.
- Formidable.
- Arduous.

assign a real number between 0 and 1 to each choice

A note on terminology

Some English word write-ins.

- Impractical.
- Bad.
- Heavy.
- Tricky.
- Intricate.
- Prodigious.
- Difficult.
- Intractable.
- Costly.
- Obdurate.
- Obstinate.
- Exorbitant.
- Interminable.

A note on terminology

Hard-boiled. [Ken Steiglitz] In honor of Cook.

Hard-ass. [AI Meyer] Hard as satisfiability.

Sisyphean. [Bob Floyd] Problem of Sisyphus was time-consuming.

Ulyssean. [Don Knuth] Ulysses was known for his persistence.
" creative research workers are as full of ideas for new terminology as they are empty of enthusiasm for adopting it. ,

- Donald Knuth

A note on terminology: acronyms

PET. [Shen Lin] Probably exponential time.

- If $\mathbf{P} \neq \mathbf{N P}$, provably exponential time.
- If $\mathbf{P}=\mathbf{N P}$, previously exponential time.

GNP. [AI Meyer] Greater than or equal to NP in difficulty.

- And costing more than the GNP to solve.

A note on terminology: made-up words

Exparent. [Mike Paterson] Exponential + apparent.

Perarduous. [Mike Paterson] Through (in space or time) + completely.

Supersat. [Al Meyer] Greater than or equal to satisfiability.

Polychronious. [Ed Reingold] Enduringly long; chronic.

A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time reduces to it.

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]

A problem such that every problem in NP polynomial-time reduces to it.

One final criticism (which applies to all the terms suggested) was stated nicely by Vaughan Pratt: "If the Martians know that $P=N P$ for Turing Machines and they kidnap me, I would lose face calling these problems 'formidable':" Yes; if $P=N P$, there's no need for any term at all. But I'm willing to risk such an embarrassment, and in fact I'm willing to give a prize of one live turkey to the first person who proves that $P=N P$.

[^0]: " We seem to be missing even the most basic understanding of the nature of its difficulty.... All approaches tried so far probably (in some cases, provably) have failed. In this sense $P=N P$ is different from many other major mathematical problems on which a gradual progress was being constantly done (sometimes for centuries) whereupon they yielded, either completely or partially. '

 - Alexander Razborov

