CS 456 Fall 2014 Project #02

CS 456: Advanced Algorithms

Programming Assignment #02

Assigned Date : Friday, October 24, 2014
Due Date : Friday, October 31, 2014 @ 12:29:59 p.m.

Objectives

Your second programming assignment is to implement Kruskal’s minimum spanning tree algorithm.
The main objective of this assignment is to empirically validate the most efficient implementation of
Kruskal’s algorithm. Hence, the sub-objectives of this assignment are:

1.

To implement the Union-Find data structure;

2. To use union-find data structure to develop an efficient implementation of Kruskal’s algorithm;

3.

and
To validate the theoretical best runtime complexity for Kruskal’s algorithm using empirical results;

Thus, you are expected to properly demonstrate that you were able to achieve these objectives
through documented work listed in your project report.

Instructions

This is an individual assignment. Do your own work.

Start early!!

Take backups of your code often!!.

Read all instructions provided here thoroughly and carefully.

The report part of your solution must be produced using a word processor. Any figures, graphs,
plots, etc., should also be produced using appropriate computer applications. Graphs/plots
should be properly labeled.

You may use any programming language of your choice. However, you should make sure that
your code compiles and runs on a typical Linux machine.

Your report must be in PDF format.

Follow a good coding standard. Use the CS department programming styling guide found here
https://www.cs.siue.edu/programming-style-guide.

You are required to make your submission through Moodle. A dropbox will be opened within a
24 hour window of the deadline and will continue to be open for an additional 24 hours. There is
no extra credit for submitting early but there will be a 15% penalty for being late. Please carefully
read the Deliverables section below for more details.

Total points: [100 points]

last updated: 10/26/14 @ 9:16am 1

https://www.cs.siue.edu/programming-style-guide

CS 456 Fall 2014 Project #02

I/0 Specifications

Your program should be capable of reading an input file that describes a graph using the following
format:

<source-vertex> <destination-vertex> <weight>

You may consider having the first line of this file to list the total number of vertices and edges of your
graph, if such a listing helps you create your data structure, but this is not mandatory. You are not to
assume any particular ordering of the listing, or the type of edge weights (edge weights can be either
integer or decimal) but you may assume the vertex IDs to be non-decimal.

Your program should use this input file to calculate the minimum spanning tree for the given graph
and generate an output file that lists the MST based on Kruskal’s greedy selection order. Furthermore,
your output file should list the time that it took your program to find the MST, along with the total cost
of the MST.

As an example, consider the following undirected graph™ and its corresponding edge list Input.dat
and Output.dat files.

Input.dat Output.dat

912 Time : Xseconds
@-S 7 124 MST :
238 871
4 2 9 347 672
459 392
g 4 14 E 188 124
s 7 10 392 364
781 347
8 1 17\), 6 897 188
C _/ “ 46 14 4509
5610 Cost 1 37
672
364

The instructor will independently verify the programmatical correctness of your submitted solution
using his own test file that may include a large number of vertices and edges. Thus, you are also not to
assume any particular size limitation of the graph your program can handle.

Deliverables

The due date of this assignment is Friday, October 31, 2014 @ 12:29:59 p.m. A dropbox will be
opened for submission on Moodle before the due date. A complete solution comprises of:

e Areport in PDF format that includes the followings:

- Motivation and Background : Use this section to explain succinctly your approach to achiev-
ing the objectives listed above [10 points]

- Description : A pseudocode listing of your program. If you are using classes, make sure to
also include an appropriate UML class interaction diagram [5 points]

- Testing Plan : In particular, what you consider to be the true runtime complexity of the
algorithm and how you plan to separate that from auxiliary tasks such as input processing
and output file generation. You must properly justify any assumptions you make. [10 points]

*edge 4-5 weight corrected on 10/26/14 @ 9:16am

last updated: 10/26/14 @ 9:16am 2

CS 456 Fall 2014 Project #02

- Results and Analysis :

» Theoretical Results: A description of the expected asymptotic behavior of your program.
You may (and probably are advised) use your pseudocode to aid this explanation [15
points]

» Empirical Results: Observations from your experiments. You should probably repeat
each experiment several times to eliminate any statistical errors, but list the outcomes of
each run in tabular format. Also, you are expected to produce output for at least three
problems - a smaller size problem, a medium size problem, and a large size problem. [15
points]

- Analysis : Prove (or disapprove) that your implementation of the Kruskal’s algorithm achieves
the theoretical runtime complexity. Provide a comparative plot between theoretical expecta-
tion vs. empirical outcome. Explain what you see. [20 points]

— Conclusions : Describe your observations and conclusions of your experiment including any
problems encountered and/or any key insights you've discovered. [10 points]

— Instructions : How to compile and run your program [5 points]

— Program listing [5 points]

* Good programming structure (headers, variable names, code re-use, functional decom-
position, object-oriented design, and comments)

References

e A compressed tarball of the directory containing your source codes. Do not include executables,
test input or sample outputs in this tarball. I will generate them using my own test input files.
To create a compressed tarball of the directory source, use the following command: tar -zcvf
namelll-pr2.tar.gz source/. Obviously, change the name to your last name and 111 to the
last three digits of your SIUE ID [5 points].

Finding large datasets to experiment will require you to either research what’s out there or generate
them using your own code. If you do use resources other than your own, make sure to properly cite
them in your report and give due credit to the original authors. By absolutely no means, you are allowed
to plagiarize code.

e SNAP Dataset found at http://snap.stanford.edu/data/
e Pajek Dataset found at http://vlado. fmf.uni-1j.si/pub/networks/data/

Here are couple of resources to look for large datasets. You may have to parse them to the input
specification described above. Use your scripting skills (or write an appropriate parser). If you use an
outside resource to do the parsing for you, make sure to cite the source.

Extra Credit (required for MS students)

Empirically validate the runtime complexity of a different implementation of Kruskal’s algorithm that
does not use the union-find data structure and compare the results against the findings above. This is a
mandatory task for MS students but considered extra credit for undergraduate students. However, your
project documentation should now be properly augmented to reflect your work. Good for [50 points].

last updated: 10/26/14 @ 9:16am 3

http://snap.stanford.edu/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/

