CS 490 : Cryptography and Computer Security

Instructor: Thoshitha Gamage, Ph.D.
Southern Illinois University at Edwardsville

Spring 2017 Syllabus

Course Information:
Title: CS 490 : Cryptography and Computer Security (3 Credits)
Location: EB 1033
Time: M & W 12:00 – 01:15 p.m.
Course Web site: http://www.cs.siue.edu/~tgamage/S17/CS490

Contact Information:
Office: EB 3053
Phone #: 650-2407
Email #: tgamage@siue.edu
Web Site : http://www.cs.siue.edu/~tgamage
Office Hours: M & W 10:00 – 11:30 a.m.
T 11:00 – 12:30 p.m. or by appointment

This course is an advanced undergraduate level introduction to cryptography and computer security. This is a research emphasis course with the following objectives.

1. To introduce fundamental modern cryptographic and computer security constructs and concepts;
2. To facilitate a learning environment that strengthens participants’ theoretical and empirical knowledge, and understanding through hand-on experiments;
3. To improve participants’ critical thinking, reading, and writing skills;
4. To introduce recent advances, broader challenges, and current trends in computer security; and
5. To spur self-curiosity in and a research appetite for advanced and/or specialized topics – network, application, web, cloud, OS, etc. – in (more generally) cybersecurity.

By the end of the semester, students are expected to be proficient in cryptographic and computer security basics, security exploits, and defensive mechanisms to aid them in their professional career advancements.

The content of this course is influenced by and was developed in accordance to the IEEE/ACM Computer Science Curriculum Guidelines (2013) http://www.acm.org/education/CS2013-final-report.pdf

1 Course Prerequisites

MATH 224 : The cryptographic component of this course is substantially formal and mathematical, both in context and in substance, and will either introduce or revise concepts in number theory, finite fields, modular arithmetic, probability theory, statistics, linear algebra etc.

CS 447 : The computer security component of this course will leverage basic understanding of the TCP/IP stack, network communication, and network programming knowledge.

Also fluency and significant experience in programming (C++, Java, Python, etc.) and Unix/Linux will be essential. If you do not meet these prerequisites, you MUST come and talk with me the first week of class. I reserve the right to drop you from the course if it becomes obvious that you do not meet the prerequisites.
2 Textbook & Resources

My lecture notes are based on the numerous textbooks from my personal library and recent literature, and has a strong mathematical flavor to them. A good set of supplemental slides along with video lectures for PP1e can be found at http://www.crypto-textbook.com/.

3 Assigned Work and Tentative Grading Policy

The following grade allocation breakdown is tentative, and may change during the semester. Unless the circumstances change, I am NOT planning on curving or rounding the final grade.

<table>
<thead>
<tr>
<th>Grading Allocation</th>
<th>Scale</th>
<th>Final Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>30%</td>
<td>90–100 A</td>
</tr>
<tr>
<td>Midterm 01</td>
<td>15%</td>
<td>80–89 B</td>
</tr>
<tr>
<td>Midterm 02</td>
<td>15%</td>
<td>70–79 C</td>
</tr>
<tr>
<td>Attendance & Scribing</td>
<td>5%</td>
<td>60–69 D</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>15%</td>
<td>below 60 F</td>
</tr>
<tr>
<td>Deterlab Experiments</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Final Project</td>
<td>15%</td>
<td></td>
</tr>
</tbody>
</table>

3.1 Exams

All exams and quizzes will be held in the lecture room.

- Midterm 01: Monday February 13th 12:00 – 01:15 p.m.
- Midterm 02: Monday March 20th 12:00 – 01:15 p.m.

3.2 Class Participation

You are expected to proactively participate in in-class discussions. This aids your learning and that of your classmates, and provides valuable feedback on the lecture. Constructive and proactive participation in in-class discussions and scribing accounts for 5% of your final grade. I, therefore, expect you to attend each and every class.

Each student is required to submit their scribe notes at least two times during the course of the semester. Scribe notes are due through Moodle within 48 hours after the lecture. Only the top two scribe submissions (based on
Moodle timestamp) will be counted as valid submissions. Scribe notes serve as a baseline set of complementary notes to you and to your colleagues, hence please do your due diligence to make them readable by others. Students are also required to check the course website and the SIUE email account regularly for any important updates.

3.3 Problem Solving

There will be roughly ~3-4 problem solving sessions (take-home and/or in-class) during the course of the semester. In preparation for in-class sessions, I will ask you to research and read about specific topics, that you may or may not find on the textbooks. I will try my best to direct you to relevant resources where applicable, but I am fully expecting you to take the responsibility of your own learning and come fully prepared to the class.

3.4 Deterlab Experiments

The first component is roughly ~3 hands-on security experiments based on DETERLab https://www.isi.deterlab.net/index.php3 with a 2 weeks deadline (except the initial setup lab, which has a 1 week deadline). You will be provided with login credentials to Deterlab soon after the first day of class. Specifics of these experiments will be posted on the course website.

3.5 Final Project

The final project is a security themed research project (preferably) of your own interest. Both analytical and theoretical studies are acceptable, but they must be your own genuine contributions. For full points, you are strongly encouraged to include an empirical component in your study either in simulation form or in performance comparison form. You will be required to present your findings to the class during Week 16. Depending on the size of the class, we might also use the final exam time slot for this purpose as well. In addition, a IEEE conference style 8 page paper of your findings will be due on the day of your presentation as the final report.

Undergraduate students can team-up for the final project with my prior approval. Each team can have a maximum two members. Graduate students may use the final project for a cybersecurity extension of your currently ongoing (thesis/project) research.

Important milestones for your project are:

- **Project Proposal (M1)** Due Wednesday March 22nd, 2017 at the beginning of class through Moodle. Your project proposal should include the following:
 1. **Executive Summary:** A high level, to-the-point summary of the project. Don’t be too wordy! I should be able to read the executive summary and know exactly what you are planning to do without too much detail. The rest of the proposal will contain these details.
 2. **Plan of Attack:** Explain how you plan to execute your proposed work. This will naturally include a listing of software, software techniques, third-party software modules, or any other logistics you plan to use to achieve your target product. Be as explicit as much as possible. This will help you spell out any roadblocks you might run into.
 3. **Planned Deliverables:** This is what you are proposing to produce as your final project. Make sure to explicitly spell out your final product.

- **Project Demo (M2)** During Week 16 (and possibly Finals Week) in class.

- **Project Report (M3)** Due Tuesday May 02nd, 2017 through Moodle. Your final report will include the followings:
 1. Motivation and objective of the experiment.
 2. A detailed methodology of your experiment. You must be able explain the commands, tools, procedures you’ve used. Don’t simply list the commands. I want you to explain what you’ve done and why you did it. Screenshots highly recommended.
 3. A detailed testing plan and test results.
 4. Justification of your observations. You must be able to justify and/or argue why (or why not) your method worked.
5. Final conclusions.

I will give you the option to choose a language of your choice for programming (though C++, Java, or Python is recommended) but the development platform is fixed to Unix/Linux.

4 Course Requirements and Policies

4.1 Attendance Policy

I allow you to miss at most 2 classes for the semester without any penalties. Medical emergencies are outside this “absentee allowance”, but should be accompanied by proper documented proof of medical services. For planned absences, assignments should be turned in before the absence rather than after. I reserve the right to lower the grade of any student who is markedly deficient in attendance and/or in-class participation. If you miss a class, it is your responsibility to find out what happened and to collect any material that was handed out in the class.

4.2 Late Policy

Unless otherwise noted or announced in-class, any leftover questions from in-class problem solving sessions are due within a week at the beginning of the next immediate class. Programming assignments typically have a 2 week deadline. Assignments may be turned within 48 hours grace period after the deadline with a 20% late penalty. No assignment is accepted beyond that.

4.3 Responsible Learning Policy

I expect you to own your degree of success in this class and, I expect you to contribute to the success of others. Examples:

- read outside the class on your own (strongly encouraged) in preparation for each lecture, jot down any questions your encounter on your reading, and bring those to the class as discussion points;
- be respectful of the learning environment. Refrain from activities that may disturb the flow of the lecture or the environment;
- cooperate with other students and to share your knowledge during in-class discussions. Respect the differences in learning and understanding of each other. Seek ways of taking advantage of those differences;
 - do not engage in disruptive “little talk“ while I am conducting the lecture; if you have a concern, raise your hand and grab my attention. be respective of your colleagues’ time and desire to learn.
 - Put your cell phones to vibrate mode and refrain from using your computers for casual web browsing. Take full advantage of the opportunity to learn.
- If another student is confused, help him or her out without disturbing the class;
- I enjoy engaging in technical conversations with students with the goal of helping them create an accurate understanding of course material. Participating in such conversations is very favorable for your class participation grade;
- If I am systematically doing something that inhibits your learning, tell me;
- engage in proactive learning: speak up when you don’t understand, question assumptions, relate course material to your experience outside class, seek out additional experience and reading related to the class. You must construct your understanding of the material;
- If a lecture point is unclear, ask questions and ask me to repeat what I said, either in class, during office hours, or by e-mail. You are probably not alone in your confusion;
- promptly review feedback you receive from me or peers to actively clarify the feedback if the material is still unclear, and to incorporate the feedback in your future work;
- spend adequate time on the course. Adequate time includes getting enough rest so that time you spend on course tasks is well-spent time. Adequate time includes proofreading and reviewing your assignments before you hand them in;
• have high expectations of yourself: set goals for yourself and try to do your very best. Consciously think about the balance between what you do to earn a grade and what you do to learn (If I’m doing something that puts these in opposition to each other, please let me know); and,
• check your SIUE assigned student email and the course website regularly for important class announcements.

IMPORTANT: I strongly discourage you getting into discussions with me about grades and how you can get a better one.

4.4 Academic Dishonesty: http://www.siue.edu/policies (3C1 & 3C2)

Do your own work. Your exams, homeworks, and programming projects are subject to the academic honor code. **DO NOT CHEAT IN ANY WAY: DO YOUR OWN WORK!** Following activities will be considered academic dishonesty:

• submitting work (such as homework assignments and projects) done by somebody else (this includes any human/electronic sources (such as web sites));
• watching and copying your neighbors’ solutions during quizzes and/or exams;
• using materials not allowed during quizzes and exams;
• using materials not allowed for the programming projects.

It is quite acceptable to ask others things like “Have you gotten this exception before?,” and even have them look briefly at your stack trace and its code. It is quite unacceptable, on the other hand, to have them spend hours helping develop or seriously rearrange your program’s logic. And, of course, it is unacceptable for two or more people to collaboratively develop the solution for a project. If you are tempted to collaborate on projects, DON’T!!

I expect you to know and observe the **SIUE Student Conduct Code (3C1) and Student Academic Code (3C2)**. Copying of other students’ work, working together on individual assignments, plagiarism of published sources and other forms of academic dishonesty will result in zero credit on the assignment for all students involved and a lower grade in the class. A second offense (across the University) will result in an automatic **F** in the course and exposes the violator to University sanctions up to and including expulsion. All offenses will be reported to Student Affairs.

4.4.1 Advice

a Don’t wait until the last minute to do homework or projects. Labs get busy, computers break down, and people get sick. These are not sufficient excuses for an extension.
b Save early; save often!
c Contact me if you are confused. Don’t wait for office hours; send an email.

4.5 Disability Support Services: http://www.siue.edu/dss

If you are a student with a disability that requires curricular or co-curricular accommodations, please go to Disability Support Services for coordination of these accommodations. All accommodations are individualized and require documentation of the functional impacts of the disability and severity. DSS is located in the Student Success Center, Room 1270; you may contact them to make an appointment by calling (618) 650-3726 or sending an email to disabilitysupport@siue.edu. Please visit the DSS website located online at www.siue.edu/dss for more information.
5 Tentative Schedule*

*Subject to adjustment and change. I reserve the right to change topics or add an item of related interest. All changes will be announced in class.

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Topics</th>
<th>References</th>
<th>Assignments/Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Jan. 09, 11</td>
<td>Introduction and Course Overview</td>
<td>BF1e/01</td>
<td>PR00 > out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Security Objectives, Policies, and Mechanisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Jan. 16, 18</td>
<td>MLK Day</td>
<td>PP1e/02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptography Basics</td>
<td>BF1e/01</td>
<td>PR00 < in</td>
</tr>
<tr>
<td>03</td>
<td>Jan. 23, 25</td>
<td>BLP Model, Basic Security Theorem</td>
<td>PP1e/02,03</td>
<td>PR01 > out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cipher Techniques, Cryptanalysis</td>
<td>PP1e/02,03</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Jan. 30, Feb. 01</td>
<td>Symmetric-Key Ciphers: DES, 3DES, One-time Pads</td>
<td>BF1e/06,07,10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Finite Fields</td>
<td>BF1e/10</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Feb. 06, 08</td>
<td>AES</td>
<td>PP1e/06,07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asymmetric-Key Ciphers: RSA</td>
<td>BF1e/09,10</td>
<td>PR01 < in</td>
</tr>
<tr>
<td>06</td>
<td>Feb. 13†, 15</td>
<td>Midterm Exam 01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSA Fast Exponentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Feb. 20, 22</td>
<td>Diffie-Hellman Key Exchange</td>
<td>PP1e/10,11</td>
<td>PR02 > out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrity: MDC, MAC, HMAC</td>
<td>BF1e/11,12</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Feb. 27, Mar. 01</td>
<td>Attacks on Prefix/Postfix MACs</td>
<td>BF1e/13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hashing: SHA, WHIRLPOOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Mar. 06†, 08†</td>
<td>Spring Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mar. 13, 15</td>
<td>Key Management: Kerberos</td>
<td>PP1e/13</td>
<td>PR02 < in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authentication: Zero Knowledge Proofs</td>
<td>BF1e/15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mar. 20†, 22</td>
<td>Midterm Exam 02</td>
<td>BF1e/01</td>
<td>PR03 > out, Proposal < in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malicious Logic, Intrusion Detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mar. 27, 29</td>
<td>Chinese Wall Model, Confinement Problem</td>
<td>BF1e/16,17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Network Security: SSL and TLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Apr. 03, 05</td>
<td>IPSec, PGP</td>
<td>BF1e/18</td>
<td>PR03 < in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNS Security, Secure Routing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Apr. 10, 12</td>
<td>Topic TBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Apr. 17, 19§</td>
<td>Topic TBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Apr. 24§, 26§</td>
<td>Final Project Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>May. 02§</td>
<td>Final Project Presentations</td>
<td></td>
<td>Report < in</td>
</tr>
</tbody>
</table>

†Spring Break †Midterm Exam §Final Project: In class presentations

6 CS 490 In a Nutshell