Lower Bounds

Lower bound: an estimate on a minimum amount of work needed to solve a given problem

Examples:
- Number of comparisons needed to find the largest element in a set of n numbers
- Number of comparisons needed to sort an array of size n
- Number of comparisons necessary for searching in a sorted array
- Number of multiplications needed to multiply two n-by-n matrices
Lower Bounds (cont.)

- Lower bound can be
 - an exact count
 - an efficiency class (Ω)

- **Tight** lower bound: there exists an algorithm with the same efficiency as the lower bound

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower bound</th>
<th>Tightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorting</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>searching in a sorted array</td>
<td>$\Omega(\log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>element uniqueness</td>
<td>$\Omega(n \log n)$</td>
<td>yes</td>
</tr>
<tr>
<td>n-digit integer multiplication</td>
<td>$\Omega(n)$</td>
<td>unknown</td>
</tr>
<tr>
<td>multiplication of n-by-n matrices</td>
<td>$\Omega(n^2)$</td>
<td>unknown</td>
</tr>
</tbody>
</table>
Methods for Establishing Lower Bounds

- trivial lower bounds
- information-theoretic arguments (decision trees)
- adversary arguments
- problem reduction
Trivial Lower Bounds

Trivial lower bounds: based on counting the number of items that must be processed in input and generated as output

Examples
- finding max element
- polynomial evaluation
- sorting
- element uniqueness
- Hamiltonian circuit existence

Conclusions
- may and may not be useful
- be careful in deciding how many elements must be processed
Decision Trees

Decision tree — a convenient model of algorithms involving comparisons in which:

- internal nodes represent comparisons
- leaves represent outcomes

Decision tree for 3-element insertion sort
Decision Trees and Sorting Algorithms

- Any comparison-based sorting algorithm can be represented by a decision tree.

- Number of leaves (outcomes) $\geq n!$

- Height of binary tree with $n!$ leaves $\geq \left\lceil \log_2 n! \right\rceil$

- Minimum number of comparisons in the worst case $\geq \left\lceil \log_2 n! \right\rceil$ for any comparison-based sorting algorithm

- $\left\lceil \log_2 n! \right\rceil \approx n \log_2 n$

- This lower bound is tight (mergesort)
Adversary Arguments

Adversary argument: a method of proving a lower bound by playing role of adversary that makes algorithm work the hardest by adjusting input

Example 1: “Guessing” a number between 1 and n with yes/no questions

Adversary: Puts the number in a larger of the two subsets generated by last question

Example 2: Merging two sorted lists of size n

\[a_1 < a_2 < \ldots < a_n \text{ and } b_1 < b_2 < \ldots < b_n \]

Adversary: $a_i < b_j$ iff $i < j$

Output $b_1 < a_1 < b_2 < a_2 < \ldots < b_n < a_n$ requires $2n-1$ comparisons of adjacent elements
Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower bound for Q is also a lower bound for P. Hence, find problem Q with a known lower bound that can be reduced to problem P in question.

Example: P is finding MST for n points in Cartesian plane Q is element uniqueness problem (known to be in $\Omega(n\log n)$)
Classifying Problem Complexity

Is the problem *tractable*, i.e., is there a polynomial-time \(O(p(n))\) algorithm that solves it?

Possible answers:

- **yes** (give examples)

- **no**
 - because it’s been proved that no algorithm exists at all (e.g., Turing’s *halting problem*).
 - because it’s been be proved that any algorithm takes exponential time.

- **unknown**
Problem Types: Optimization and Decision

- **Optimization problem**: find a solution that maximizes or minimizes some objective function

- **Decision problem**: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem

- **optimization**: find Hamiltonian cycle of minimum length
- **decision**: find Hamiltonian cycle of length \(\leq m \)

Decision problems are more convenient for formal investigation of their complexity.
Class P

P: the class of decision problems that are solvable in $O(p(n))$ time, where $p(n)$ is a polynomial of problem’s input size n

Examples:

- searching
- element uniqueness
- graph connectivity
- graph acyclicity
- primality testing (finally proved in 2002)
Class NP

NP (nondeterministic polynomial): class of decision problems whose proposed solutions can be verified in polynomial time = solvable by a *nondeterministic polynomial algorithm*

A *nondeterministic polynomial algorithm* is an abstract two-stage procedure that:

- generates a random string purported to solve the problem
- checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating and verifying a solution on one of its tries

Why this definition?

- led to development of the rich theory called “computational complexity”
Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e., are there values of its variables that makes it true?

This problem is in \(NP \). Nondeterministic algorithm:

- Guess truth assignment
- Substitute the values into the CNF formula to see if it evaluates to true

Example: \((A \lor \neg B \lor \neg C) \land (A \lor B) \land (\neg B \lor \neg D \lor E) \land (\neg D \lor \neg E)\)

Truth assignments:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Checking phase: \(O(n) \)
What problems are in NP?

- Hamiltonian circuit existence
- Partition problem: Is it possible to partition a set of n integers into two disjoint subsets with the same sum?
- Decision versions of TSP, knapsack problem, graph coloring, and many other combinatorial optimization problems. (Few exceptions include: MST, shortest paths)

- All the problems in P can also be solved in this manner (no guessing is necessary), so we have:

\[P \subseteq NP \]

- Big question: $P = NP$?
NP-Complete Problems

A decision problem D is *NP-complete* if it’s as hard as any problem in *NP*, i.e.,

- D is in *NP*
- every problem in *NP* is polynomial-time reducible to D

Cook’s theorem (1971): CNF-sat is *NP*-complete
Other \textit{NP}-complete problems obtained through polynomial-time reductions from a known \textit{NP}-complete problem

Examples: TSP, knapsack, partition, graph-coloring and hundreds of other problems of combinatorial nature
P = NP? Dilemma Revisited

- \(P = NP \) would imply that every problem in \(NP \), including all \(NP \)-complete problems, could be solved in polynomial time.

- If a polynomial-time algorithm for just one \(NP \)-complete problem is discovered, then every problem in \(NP \) can be solved in polynomial time, i.e., \(P = NP \).

- Most but not all researchers believe that \(P \neq NP \), i.e., \(P \) is a proper subset of \(NP \).