Divide-and-Conquer

The most-well known algorithm design strategy:

1. **Divide instance of problem into two or more smaller instances**

2. **Solve smaller instances recursively**

3. **Obtain solution to original (larger) instance by combining these solutions**
Divide-and-Conquer Technique (cont.)

A problem of size n

- subproblem 1 of size $n/2$
 - a solution to subproblem 1

- subproblem 2 of size $n/2$
 - a solution to subproblem 2

a solution to the original problem
Divide-and-Conquer Examples

- Sorting: mergesort and quicksort
- Binary tree traversals
- Multiplication of large integers
- Matrix multiplication: Strassen’s algorithm
- Closest-pair and convex-hull algorithms
- Binary search: decrease-by-half (or degenerate divide&conq.)
General Divide-and-Conquer Recurrence

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \quad \text{where } f(n) \in \Theta(n^d), \quad d \geq 0 \]

Master Theorem:

- If \(a < b^d \), \(T(n) \in \Theta(n^d) \)
- If \(a = b^d \), \(T(n) \in \Theta(n^d \log n) \)
- If \(a > b^d \), \(T(n) \in \Theta(n^{\log b^a}) \)

Note: The same results hold with \(O \) instead of \(\Theta \).

Examples:

\[T(n) = 4T\left(\frac{n}{2}\right) + n \quad \Rightarrow \quad T(n) \in ? \]
\[T(n) = 4T\left(\frac{n}{2}\right) + n^2 \quad \Rightarrow \quad T(n) \in ? \]
\[T(n) = 4T\left(\frac{n}{2}\right) + n^3 \quad \Rightarrow \quad T(n) \in ? \]
Mergesort

- Split array A[0..\(n-1\)] in two about equal halves and make copies of each half in arrays B and C
- Sort arrays B and C recursively
- Merge sorted arrays B and C into array A as follows:
 - Repeat the following until no elements remain in one of the arrays:
 - compare the first elements in the remaining unprocessed portions of the arrays
 - copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
 - Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.
Pseudocode of Mergesort

ALGORITHM Mergesort(A[0..n − 1])

//Sorts array A[0..n − 1] by recursive mergesort
//Input: An array A[0..n − 1] of orderable elements
//Output: Array A[0..n − 1] sorted in nondecreasing order
if n > 1
 copy A[0..⌊n/2⌋ − 1] to B[0..⌊n/2⌋ − 1]
 copy A[⌊n/2⌋..n − 1] to C[0..⌊n/2⌋ − 1]
 Mergesort(B[0..⌊n/2⌋ − 1])
 Mergesort(C[0..⌊n/2⌋ − 1])
 Merge(B, C, A)
Pseudocode of Merge

ALGORITHM
\(\text{Merge}(B[0..p-1], C[0..q-1], A[0..p+q-1]) \)

//Merges two sorted arrays into one sorted array
//Input: Arrays \(B[0..p-1] \) and \(C[0..q-1] \) both sorted
//Output: Sorted array \(A[0..p+q-1] \) of the elements of \(B \) and \(C \)

\[i \leftarrow 0; \quad j \leftarrow 0; \quad k \leftarrow 0 \]

while \(i < p \text{ and } j < q \) **do**

\[\text{if } B[i] \leq C[j] \]
\[A[k] \leftarrow B[i]; \quad i \leftarrow i + 1 \]

\[\text{else } A[k] \leftarrow C[j]; \quad j \leftarrow j + 1 \]

\[k \leftarrow k + 1 \]

if \(i = p \)

\[\text{copy } C[j..q-1] \text{ to } A[k..p+q-1] \]

else \(\text{copy } B[i..p-1] \text{ to } A[k..p+q-1] \)
Mergesort Example

8 3 2 9 7 1 5 4

8 3 2 9

8 3

8

2 9

2 9

9

7 1 5 4

7 1

7

5 4

5 4

5

1 4 5 7

1 4 5 7

1

1

3 8

3 8

3

4 5

4 5

4

2 3 8 9

2 3 8 9

2

1 2 3 4 5 7 8 9

1 2 3 4 5 7 8 9
Analysis of Mergesort

- All cases have same efficiency: $\Theta(n \log n)$

- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting:
 \[\lceil \log_2 n! \rceil \approx n \log_2 n - 1.44n \]

- Space requirement: $\Theta(n)$ (not in-place)

- Can be implemented without recursion (bottom-up)
Quicksort

- Select a *pivot* (partitioning element) – here, the first element
- Rearrange the list so that all the elements in the first s positions are smaller than or equal to the pivot and all the elements in the remaining $n-s$ positions are larger than or equal to the pivot (see next slide for an algorithm)

$$\begin{array}{c}
p \\
A[i] \leq p & A[i] \geq p
\end{array}$$

- Exchange the pivot with the last element in the first (i.e., \leq) subarray — the pivot is now in its final position
- Sort the two subarrays recursively
Hoare’s Partitioning Algorithm

Algorithm $Partition(A[l..r])$

// Partitions a subarray by using its first element as a pivot
// Input: A subarray $A[l..r]$ of $A[0..n-1]$, defined by its left and right
// indices l and r ($l < r$)
// Output: A partition of $A[l..r]$, with the split position returned as
// this function’s value

$p \leftarrow A[l]$

$i \leftarrow l; \quad j \leftarrow r + 1$

repeat
 repeat $i \leftarrow i + 1$ until $A[i] \geq p$
 repeat $j \leftarrow j - 1$ until $A[j] < p$
 swap($A[i], A[j]$)
until $i \geq j$

swap($A[i], A[j]$) // undo last swap when $i \geq j$

swap($A[l], A[j]$)

return j
Quicksort Example

5 3 1 9 8 2 4 7
Analysis of Quicksort

- Best case: split in the middle — $\Theta(n \log n)$
- Worst case: sorted array! — $\Theta(n^2)$
- Average case: random arrays — $\Theta(n \log n)$

- Improvements:
 - better pivot selection: median of three partitioning
 - switch to insertion sort on small subfiles
 - elimination of recursion

 These combine to 20-25% improvement

- Considered the method of choice for internal sorting of large files ($n \geq 10000$)
Binary Tree Algorithms

Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm \textit{Inorder}(T)

\begin{align*}
\text{if } T \neq \emptyset & \\
\text{\quad Inorder}(T_{\text{left}}) & \\
\text{\quad print(root of } T) & \\
\text{\quad Inorder}(T_{\text{right}}) &
\end{align*}

Efficiency: \(\Theta(n) \)
Ex. 2: Computing the height of a binary tree

\[h(T) = \max\{h(T_L), h(T_R)\} + 1 \quad \text{if } T \neq \emptyset \text{ and } h(\emptyset) = -1 \]

Efficiency: \(\Theta(n) \)
Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

\[
\begin{array}{cccc}
 a_1 & a_2 & \ldots & a_n \\
 b_1 & b_2 & \ldots & b_n \\
 (d_{10}) & d_{11} & d_{12} & \ldots & d_{1n} \\
 (d_{20}) & d_{21} & d_{22} & \ldots & d_{2n} \\
 \ldots & \ldots & \ldots & \ldots & \ldots \\
 (d_{n0}) & d_{n1} & d_{n2} & \ldots & d_{nn}
\end{array}
\]

Efficiency: n^2 one-digit multiplications
First Divide-and-Conquer Algorithm

A small example: $A \times B$ where $A = 2135$ and $B = 4014$

$A = (21 \cdot 10^2 + 35), \quad B = (40 \cdot 10^2 + 14)$

So, $A \times B = (21 \cdot 10^2 + 35) \times (40 \cdot 10^2 + 14)$

$= 21 \times 40 \cdot 10^4 + (21 \times 14 + 35 \times 40) \cdot 10^2 + 35 \times 14$

In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are n-digit, A_1, A_2, B_1, B_2 are $n/2$-digit numbers),

$A \times B = A_1 \times B_1 \cdot 10^n + (A_1 \times B_2 + A_2 \times B_1) \cdot 10^{n/2} + A_2 \times B_2$

Recurrence for the number of one-digit multiplications $M(n)$:

$M(n) = 4M(n/2), \quad M(1) = 1$

Solution: $M(n) = n^2$
Second Divide-and-Conquer Algorithm

\[A \times B = A_1 \times B_1 \cdot 10^n + (A_1 \times B_2 + A_2 \times B_1) \cdot 10^{n/2} + A_2 \times B_2 \]

The idea is to decrease the number of multiplications from 4 to 3:

\[(A_1 + A_2) \times (B_1 + B_2) = A_1 \times B_1 + (A_1 \times B_2 + A_2 \times B_1) + A_2 \times B_2, \]

I.e., \((A_1 \times B_2 + A_2 \times B_1) = (A_1 + A_2) \times (B_1 + B_2) - A_1 \times B_1 - A_2 \times B_2, \)

which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications \(M(n): \)

\[M(n) = 3M(n/2), \quad M(1) = 1 \]

Solution: \(M(n) = 3^{\log_2 n} = n^{\log_2 3} \approx n^{1.585} \)
Example of Large-Integer Multiplication

\[2135 \times 4014 \]
Strassen observed [1969] that the product of two matrices can be computed as follows:

\[
\begin{pmatrix}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{pmatrix}
= \begin{pmatrix}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{pmatrix}
\times \begin{pmatrix}
B_{00} & B_{01} \\
B_{10} & B_{11}
\end{pmatrix}
\]

\[
\begin{aligned}
M_1 + M_4 - M_5 + M_7 &= M_3 + M_5 \\
M_2 + M_4 &= M_1 + M_3 - M_2 + M_6
\end{aligned}
\]
Formulas for Strassen’s Algorithm

\[M_1 = (A_{00} + A_{11}) \times (B_{00} + B_{11}) \]

\[M_2 = (A_{10} + A_{11}) \times B_{00} \]

\[M_3 = A_{00} \times (B_{01} - B_{11}) \]

\[M_4 = A_{11} \times (B_{10} - B_{00}) \]

\[M_5 = (A_{00} + A_{01}) \times B_{11} \]

\[M_6 = (A_{10} - A_{00}) \times (B_{00} + B_{01}) \]

\[M_7 = (A_{01} - A_{11}) \times (B_{10} + B_{11}) \]
Analysis of Strassen’s Algorithm

If n is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

$$M(n) = 7M(n/2), \quad M(1) = 1$$

Solution: $M(n) = 7\log_2 n = n\log_2 7 \approx n^{2.807}$ vs. n^3 of brute-force alg.

Algorithms with better asymptotic efficiency are known but they are even more complex.
Step 1 Divide the points given into two subsets P_l and P_r by a vertical line $x = m$ so that half the points lie to the left or on the line and half the points lie to the right or on the line.
Step 2 Find recursively the closest pairs for the left and right subsets.

Step 3 Set $d = \min\{d_l, d_r\}$

We can limit our attention to the points in the symmetric vertical strip S of width $2d$ as possible closest pair. (The points are stored and processed in increasing order of their y coordinates.)

Step 4 Scan the points in the vertical strip S from the lowest up. For every point $p(x,y)$ in the strip, inspect points in the strip that may be closer to p than d. There can be no more than 5 such points following p on the strip list!
Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by

\[T(n) = 2T(n/2) + M(n), \quad \text{where } M(n) \in O(n) \]

By the Master Theorem (with \(a = 2, b = 2, d = 1 \))

\[T(n) \in O(n \log n) \]
Quickhull Algorithm

Convex hull: smallest convex set that includes given points

- Assume points are sorted by x-coordinate values
- Identify *extreme points* P_1 and P_2 (leftmost and rightmost)
- Compute *upper hull* recursively:
 - find point P_{max} that is farthest away from line P_1P_2
 - compute the upper hull of the points to the left of line P_1P_{max}
 - compute the upper hull of the points to the left of line $P_{\text{max}}P_2$
- Compute *lower hull* in a similar manner

![Diagram of Quickhull Algorithm](image-url)
Efficiency of Quickhull Algorithm

- Finding point farthest away from line P_1P_2 can be done in linear time.

- Time efficiency:
 - worst case: $\Theta(n^2)$ (as quicksort)
 - average case: $\Theta(n)$ (under reasonable assumptions about distribution of points given)

- If points are not initially sorted by x-coordinate value, this can be accomplished in $O(n \log n)$ time.

- Several $O(n \log n)$ algorithms for convex hull are known.