CS 456: Advanced Algorithms
Notes #01

Disclaimer: The following is an outlined list of topics covered during Aug. 19 – Sep. 04 lectures. This list is not a substitute for missing classes or not taking your own (much more comprehensive) notes based on in-class discussions, but rather a quick reference guide based on the instructor’s own notes and recollection. The list also does not reflect the order in which the topics were discussed in the classes. The objective of this list is to help you refresh your memory and fill any gaps in your own notes.

Topics Covered

- 08/19/2014
 - Defining Algorithms
 - Why learn algorithms
 - What does it mean for an algorithm to be efficient
 - The three important questions to ask about algorithms – correctness, running time, order of growth
 * e.g. Fibonacci Numbers

- 08/21/2014
 - Difference between a problem and a problem instance
 - What does it mean for an algorithm to be correct
 - Proving correctness using invariants
 * Defining Invariants
 * Initialization
 * Maintenance
 * Termination
 - Partial correctness vs. total correctness
 - How preconditions and postconditions relate to correctness proofs
 - Developing Invariants – e.g. Insertion Sort

- 08/28/2014
 - Analyzing Algorithms (Runtime analysis)
 * e.g. Insertion sort
 - Best case vs worse case analysis
 - Order of growth
 * Big O (oh) notation
 * Big Omega notation
 * Big Theta notation
 - How to use limit rule to compare order of growth

- 09/02/2014
 - Introduction to greedy strategy
- Representative problems - minimum spanning trees, Prim’s algorithm, Kruskal’s algorithm
- Activity scheduling problem
- Greedy strategies for the activity scheduling problem

• 09/04/2014
 - Activity scheduling problem (contd....)
 * Proving correctness using mathematical induction
 * Runtime analysis

Questions? Comments? – Contact the instructor at his email address.