3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
3. Graphs

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering

Section 3.1
Undirected graphs

Notation. $G = (V, E)$

- $V =$ nodes.
- $E =$ edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|, m = |E|$.

$V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$

$E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6, 7-8 \}$

$m = 11, n = 8$
Some graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>node</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersection, airport</td>
<td>highway, airway route</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person, actor</td>
<td>friendship, movie cast</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein-protein interaction</td>
</tr>
<tr>
<td>molecule</td>
<td>atom</td>
<td>bond</td>
</tr>
</tbody>
</table>
Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
3 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
5 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
7 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
8 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]
Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.
- Two representations of each edge.
- Space is $\Theta(m + n)$.
- Checking if (u, v) is an edge takes $O(degree(u))$ time.
- Identifying all edges takes $\Theta(m + n)$ time.

![Graph example](image)
Paths and connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence of nodes v_1, v_2, \ldots, v_k with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

Def. A path is **simple** if all nodes are distinct.

Def. An undirected graph is **connected** if for every pair of nodes u and v, there is a path between u and v.
Cycles

Def. A cycle is a path v_1, v_2, \ldots, v_k in which $v_1 = v_k$, $k > 2$, and the first $k − 1$ nodes are all distinct.

cycle C = 1–2–4–5–3–1
Trees

Def. An undirected graph is a **tree** if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has $n - 1$ edges.
Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

the same tree, rooted at 1
3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering

Section 3.2
Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between s and t?

s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t?

Applications.

- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.
Breadth-first search

BFS intuition. Explore outward from \(s \) in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.
- \(L_0 = \{ s \} \).
- \(L_1 = \) all neighbors of \(L_0 \).
- \(L_2 = \) all nodes that do not belong to \(L_0 \) or \(L_1 \), and that have an edge to a node in \(L_1 \).
- \(L_{i+1} = \) all nodes that do not belong to an earlier layer, and that have an edge to a node in \(L_i \).

Theorem. For each \(i \), \(L_i \) consists of all nodes at distance exactly \(i \) from \(s \). There is a path from \(s \) to \(t \) iff \(t \) appears in some layer.
Breadth-first search

Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then, the level of x and y differ by at most 1.
Breadth-first search: analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation.

Pf.

• Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

• Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\text{degree}(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \text{degree}(u) = 2m$. □

 each edge (u, v) is counted exactly twice
 in sum: once in $\text{degree}(u)$ and once in $\text{degree}(v)$
Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$.
Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.
3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Directed graphs

Notation. \(G = (V, E) \).
- Edge \((u, v)\) leaves node \(u\) and enters node \(v\).

Ex. Web graph: hyperlink points from one web page to another.
- Orientation of edges is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
Some directed graph applications

<table>
<thead>
<tr>
<th>directed graph</th>
<th>node</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
World wide web

Web graph.

- Node: web page.
- Edge: hyperlink from one page to another (orientation is crucial).
- Modern search engines exploit hyperlink structure to rank web pages by importance.
Road network

Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Ecological food web

Food web graph.
- Node = species.
- Edge = from prey to predator.

Graph search

Directed reachability. Given a node \(s \), find all nodes reachable from \(s \).

Directed \(s \)-\(t \) shortest path problem. Given two node \(s \) and \(t \), what is the length of the shortest path from \(s \) and \(t \) ?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page \(s \). Find all web pages linked from \(s \), either directly or indirectly.
Strong connectivity

Def. Nodes u and v are **mutually reachable** if there is a both path from u to v and also a path from v to u.

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.

Pf. ⇐ Path from u to v: concatenate $u \rightarrow s$ path with $s \rightarrow v$ path.

Path from v to u: concatenate $v \rightarrow s$ path with $s \rightarrow u$ path. ▪

ok if paths overlap
Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.
- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{reverse}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. □

reverse orientation of every edge in G

![Graph examples](image_url)

- **strongly connected**
- **not strongly connected**
Strong components

Def. A *strong component* is a maximal subset of mutually reachable nodes.

![Graph with strong components highlighted]

Theorem. [Tarjan 1972] Can find all strong components in $O(m + n)$ time.
Section 3.6

3. Graphs

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

![a DAG](image1)

![a topological ordering](image2)
Precedence constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.

- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]
- Suppose that G has a topological order v_1, v_2, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, v_2, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. \blacksquare

![Diagram](image)

The directed cycle C

The supposed topological order: v_1, \ldots, v_n
Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed acyclic graphs

Lemma. If \(G \) is a DAG, then \(G \) has a node with no entering edges.

Pf. [by contradiction]

- Suppose that \(G \) is a DAG and every node has at least one entering edge. Let's see what happens.
- Pick any node \(v \), and begin following edges backward from \(v \). Since \(v \) has at least one entering edge \((u, v)\) we can walk backward to \(u \).
- Then, since \(u \) has at least one entering edge \((x, u)\), we can walk backward to \(x \).
- Repeat until we visit a node, say \(w \), twice.
- Let \(C \) denote the sequence of nodes encountered between successive visits to \(w \). \(C \) is a cycle. ■
Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n]

- Base case: true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no entering edges.
- $G \setminus \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \setminus \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G \setminus \{v\}$
- in topological order. This is valid since v has no entering edges.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G \setminus \{v\}$
and append this order after v
Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.

- Maintain the following information:
 - $\text{count}(w) =$ remaining number of incoming edges
 - $S =$ set of remaining nodes with no incoming edges
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}(w)$ for all edges from v to w;
 and add w to S if $\text{count}(w)$ hits 0
- this is $O(1)$ per edge