
Ch 11

Inheritance and Polymorphism

1

Use inheritance to factor out common
functionality

Undergraduate

-first: String
-last: String
-academicClass: String

+displayTranscripts(): void
+toString(): String

Graduate

-first: String
-last: String
-academicYear: int

+displayTranscripts(): void
+toString(): String

2

Factor common features into
Student

3

Undergraduate

-academicClass: String

+toString(): String

Graduate

-academicYear: int

+toString(): String

Student

-first: String
-last: String

+displayTranscripts(): void
+toString(): String

Abstract class:
Cannot instantiate

output student's name

override to add subclass's added field to the output

super gives you access to the
superclass's members

4

Undergraduate

-academicClass: String

+toString(): String

Graduate

-academicYear: int

+toString(): String

Student

-first: String
-last: String

+displayTranscripts(): void 
+toString(): String

super

public class Student {...}

public class Undergraduate extends Student {...}
public class Graduate extends Student {...}

A subclass constructor calls a
superclass constructor

5

// In subclass Undergraduate

public Undergraduate() {
 this("unsigned", "unsigned", "unsigned");
}

// In subclass Undergraduate

public Undergraduate(String first,  
 String last, String academicClass) {
 // Calls super() implicitly if no super call made
 super(first, last);
 this.academicClass = academicClass;
}

Override a method when you want to
do your own thing

6

// In subclass Undergraduate

public String toString() {
 return super.toString() +
 "\nAcademic class: " +
 academicClass;
}

Overload a method when you want to
add flexibility

7

Time2

Type to enter text

+toString(format24: boolean): String

Time

-hr: int
-min: int

+toString(): String

Polymorphism is build into the Java
psychic

8

...
processStudent(new Undergraduate("Allen", "Apple", "Freshman"));
procesStudent(new Graduate("Bill", "Broccoli", 1));

public void processStudent(Student student) {
 System.out.println(student.toString());
}

Q? Which toString() method gets executed? In the
superclass or subclass?

A: Through polymorphism the subclass method gets
executed. Here the object's type (Undergraduate or
graduate) dictates, rather than the object's reference type
(Student)

Dynamic binding means a called
method is chosen at run time

9

instanceof allows you to find out the
object's type at run time

10

public void processStudent(Student student) {
 if (student instanceof Undergraduate) {
 System.out.print("Processing an undergraduate: ");
 System.out.println(((Undergraduate) student).getAcademicClass());

 } else if (student instanceof Graduate) {
 System.out.print("Processing a graduate: ");
 System.out.println(((Graduate) student).getAcademicYear());
 }
}

There are four accessor modes in Java

Private1

Default2

Protected3

11

Public4

Private member in A accessible  
only in defining class

public class A {}

public class D {}

public class C {}

public class B {}

public class E {}

package a

package b

12

Default member in A accessible  
in same package

public class A {}

public class D {}

public class C {}

public class B {}

public class E {}

package a

package b

13

Protected member in A accessible 
in same package and subclasses

public class A {}

public class D {}

public class C {}

public class B {}

public class E {}

package a

package b

14

Public member in A accessible 
by all

public class A {}

public class D {}

public class C {}

public class B {}

public class E {}

package a

package b

15

To prevent extending a class use
final

public final class classThatCantBeExtended {
}

16

To prevent overriding a method use
final

public final void methodThatCantBeOverriden() {
}

17

