Ch 11

Inheritance and Polymorphism

Use inheritance to factor out common
functionality

Undergraduate

—first: String
—last: String

Graduate

—first: String
—last: String

Factor common features Iinto

Student
| .
; Student Abstract class. :
s s ——-————=-—=-o-- Cannot instantiate,
—first: String
—last: String
+displayTranscripts(): void

+
~
o
n
~
S
.
3
Q
~~
~—
W
~
ﬁ
.
S
Q

Undergraduate Graduate
—academicClass: String —academicYear: int
R) S ——— Y AP
! +toString(): String +toString(): String :
|

override to add subclass's added field to the output,

super JIVES you access to the
superclass's members

Student
—first: String

public class Student {...}

I-last: String

super +displayTranscripts(): void
+toString(): String

i

Undergraduate Graduate
—academicClass: String —academicYear: 1int
+toString(): String +toString(): String

public class Undergraduate extends Student {...}
public class Graduate extends Student {...}

// In subclass Undergraduate

public Undergraduate() {
this("unsigned", "unsigned", "unsigned");
ks

// In subclass Undergraduate

public Undergraduate(String first,
String last, String academicClass) {
// Calls super() implicitly if no super call made
super(first, last);
this.academicClass = academicClass;

// In subclass Undergraduate

public String toString() {
return super.toString() +
"\nAcademic class: " +
academicClass;

Time

—hr: int
—min: int

+toString(): String

Time2

Type to enter text

+toString(format24: boolean): String

Polymorphism is build into the Java
psychic

processStudent(new Undergraduate("Allen", "Apple", "Freshman"));
procesStudent(new Graduate("Bill", "Broccoli", 1));

public void processStudent(Student student) A
System.out.println(student.toString());

}

Q7 Which toString() method gets executed? In the
superclass or subclass?

A: Through polymorphism the subclass method gets
executed. Here the object's type (Undergraduate or
graduate) dictates, rather than the object's reference type
(Student)

Dynamic binding means a called
method Is chosen at run time

instanceof allows you to find out the
object's type at run time

public void processStudent(Student student) {
if (student instanceof Undergraduate) {
System.out.print("Processing an undergraduate: ");
System.out.println(((Undergraduate) student).getAcademicClass());

} else if (student instanceof Graduate) {
System.out.print("Processing a graduate: ");
System.out.println(((Graduate) student).getAcademicYear());

}

¥

There are four accessor modes in Java

U Private
@ Default

@ Protected
"4) Public

Private member in A accessible
only Iin defining class

SN W8S — public class B {}

public class C {}

public class D {}| |public class E {}

Detault member in A accessible
IN same package

public class A {}|—|public class B {}

public class C {}

public class D {}| |public class E {}

Protected member in A accessible
IN same package and subclasses

public class A {} [|public class B {}

public class C {}

public class D {}| |public class E {}

Public member In A accessible
by all

public class A {}—public class B {}

public class C {}

public class D {}| |public class E {}

public final class classThatCantBeExtended {
+

16

public final void methodThatCantBeOverriden() {
}

17

